


### **SEM PicoIndenter Series**

# **PI Cryo for Hysitron PI 89**

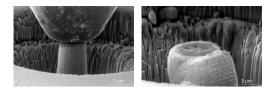
## In-Situ SEM Nanomechanics at Cryogenic Temperatures

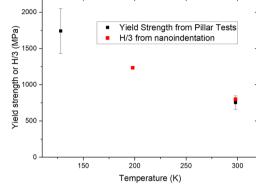
Bruker's new PI Cryo environmental stage extends quantitative in-situ nanomechanical testing capabilities of the PI 89 SEM PicoIndenter down to -130°C and below. Now with its combination of cryogenic and high temperature options, PI 89 can accurately perform mechanical characterization, including indentation, cantilever bending, and pillar or particle compression, of small-scale samples from one temperature extreme to the other. Since the deformation mechanisms and properties of materials can change dramatically as a function of temperature, this increased capability helps provide critical data for designing new structural materials that operate in extreme conditions.



#### FIGURE 1

Hysitron PI 89 equipped with PI Cryo inside a SEM chamber.


#### **PI Cryo Features**


- Proprietary stage design enables reliable in-situ mechanical testing down to -130°C
- Cryostat and copper braids ensure isothermal testing conditions
- Feedback-controlled heaters deliver precise intermediate temperature control to both tip and sample
- Thermal breaks prevent leakage into the transducer and stages while maintaining cooling power for regions of interest
- Full compatibility with Hysitron XPM provides comprehensive quantitative nanomechanical property maps and property distribution statistics in a record amount of time
- Rapid setpoint stabilization enables high-throughput variable temperature cryogenic testing

# Test Case: Steel Sample at Cryogenic Temperatures

Nitronic 50 stainless steel is an austenitic stainless steel with a blend of strength and corrosion resistance that is higher than stainless steel grades 316, 316/316L, 317, and 317/317L. It is known to have good ductility and impact resistance at cryogenic temperatures.

Cryogenic pillar tests indicate that Nitronic 50 retains good ductility all the way down to -140°C as indicated by the high plastic strain achieved in the post mortem image. The yield strength increased by about a factor of 2 over the same temperature range, which compares well with H/3 conversion of nanoindentation on the same material done with the Hysitron TI 980 TriboIndenter cryo option. However, the added benefit of in-situ testing allows for visualization of the deformation mechanisms, in this case slip bands, during and after the test.





#### FIGURE 2

A flat punch tip aligned with a Nitronic 50 pillar for testing at -140°C (left) and postmortem image of Nitronic 50 pillar test performed at -140°C (right).

#### FIGURE 3

Comparison of yield strength from pillar tests and H/3 hardness conversion for Nitronic 50.

#### Applications

Materials properties (e.g., yield strength, elastic modulus, and fatigue characteristics) can change significantly at cryogenic temperatures, most prominently for ductile-to-brittle transitions. Such changes must be well-characterized to enable the development of new materials, and design of robust components for the chemical industry, cryogenic fuels, aerospace, refrigeration, food and beverage, and automotive markets.

#### Materials suitable for cryogenic applications include:

- Austenitic stainless steels
- Aluminum alloys
- Copper alloys
- Niobium
- Titanium

### **PI Cryo Specifications**

| Minimum temperature   | -130°C and below |
|-----------------------|------------------|
| Maximum temperature*  | 50°C             |
| Temperature stability | <1°C             |
| Drift rate            | <2 nm/sec        |
| Maximum load          | 3.5 N            |
| Maximum displacement  | 150 µm           |

\*800°C and 1000°C options are available separately.

Bruker Nano Surfaces and Metrology Minneapolis, MN • USA

Phone +1.952.835.6366

productinfo@bruker.com



www.bruker.com/Hysitron-PI-89