Microanalysis: SEM-EDS Large Area High Resolution Maps of Geological Samples

Bruker Nano Analytics, Berlin, Germany Webinar, March, 2019

Presenters

Max Patzschke

Application Scientist Bruker Nano Analytics, Berlin, Germany

Andrew Menzies, PhD

Applications Scientist, Bruker Nano Analytics, Berlin, Germany

Overview

- Introduction / Presenters
- Webinar Overview Microanalysis
- Workspaces: Esprit Software
 - SEM-EDS: Elemental Hypermapping
- Examples: Geological Applications:
 - Economic Geology Exotic Cu Deposits
 - Igneous Petrology Volcanic Extrusives
 - Metamorphic Petrology
- Analytical Considerations, Summary and Conclusions

Microanalysis: SEM-EDS Introduction Esprit Software Workspaces

Bruker SEM Analyzers Our "evolving eyes"

SEM-EDS: Overview Software – Esprit 2.1

ESPRIT for SEM-EDS Spectra, Project Management and Report

ESPRIT for SEM-EDS Workspaces

ESPRIT for SEM-EDS HyperMapping

ESPRIT for SEM-EDS Workspace: HyperMapping

Line scan

Spectrum

Charts

- Spectra storage per pixel
- Internal storage of all element signals
- Re-examination from database possible
- PTS= position-tagged spectrometry

Map

Phases

ESPRIT for SEM-EDS Workspace: HyperMapping

Phases calculated automatically by the software using:

- Histogram,
- Cluster or
- pre defined objects

Sum spectrum and area % are calculated from each phase

ESPRIT for SEM-EDS Maximum Pixel Spectrum

Element Identification: MaximumPixelSpectrum

 Maximum Pixel Spectrum for identification of elements that are locally enriched in only a few pixels.

ESPRIT for SEM-EDS Quantified Map (Qmap)

Maps can be quantified with binning of:

- 1x1 pixel to
- 64x64 pixel

and displayed in:

- counts,
- net sum,
- mass%, or
- atomic%

ESPRIT for SEM-EDS **High-resolution Map with** 4072x3072 pixel and 500 kcps

ESPRIT for SEM-EDS Hypermapping: Image Extension

Image Extension

- Use actual sample position as central Mapping position and define number of x/y frames around
- Result: **one** Hypermap file
- Image extension can be enlarged for a full sample map with more than 20,000 x 15,000 pixels

ESPRIT for SEM-EDS Hypermapping: Image Extension

- HyperMaps and images of all kind can be enlarged by activating image extension
- Software uses central mapping position, and build automatic number of desired x/y fields around
- One HyperMap file as result for entire on- and offline data processing
- HyperMaps with more than 20.000x15.000 pixels can be acquired

Easy setup for large area mappings

SEM-EDS: Hypermap Results - Examples

SEM-EDS: Hypermapping (Large Area Maps)

- Peak Intensity maps
 - Deconvolution of Peak Intensities
- > Objects:
 - Line Scans
 - Area Spectra and Quantification
- Maximum Pixel Spectrum
 - Identifying trace phases and trace elements
- Qmap (Quantification Maps)
- Autophase ID: Mineralogy

Microanalysis: SEM-EDS Hypermap - Examples

Geological Applications: Exotic-Cu Deposits

- Exotic-Cu deposits often form in the vicinity of the parental porphyry system due to the lateral migration of Cu-bearing fluids.
- Mineralisation in this type of deposit comprises different species of copper minerals and mineraloids broadly defined as green-copper (*cobre-verde*) and black-copper (*cobre-negro*) ores.
- The analysis and subsequent definition of Cu-bearing minerals from exotic-Cu deposits is extremely complex due to the fine scaled textures and compositional variation.

Chrysocola $Cu_{2-x}(AI,Fe^{3+})_{x}H_{2-x}[Si_{2}O_{5}](OH)_{4*}nH_{2}O_{5}]$

Geological Applications: Exotic-Cu Deposits

Cu-Sulphides	Cu-bearing Sulphides, including Covellite, Diginite, Chalcopyrite, Bornite, Tennantite, Tetrahedrite and Enargite		
Cu-Oxides	Cu-bearing Oxides, including Tennorite, Cuprite, Delafossite, and Cuprospinel		
Cu-Halides	Cu-bearing Halides, including Atacamite		
Cu-Carbonates	Cu-bearing Carbonates, including Malachite and Azurite		
Cu-Sulphates	Cu-bearing Sulphates, including Brochantite		
Cu-Phosphates	Cu-bearing Phosphates, including Turquoise, Pseudomalachite, Libethenite, Sampleite and Chalcosiderite		
Cu-Silicates	Cu-bearing Silicates, including Chrysocolla, Plancheite, Shattuckite and closely related Cu-Si-O phases		
Cu-Mn Oxides	Cu-bearing mineral phases incorporating Cu-Mn-O with other minor elemental components		
Silicates+Cu	Various Silicates that incorporate an additional minor Cu component, including Chlorite, Biotite, Kaolinite, Illite, Montmorillonite and Nontronite		
Fe-Oxides+Cu	Various Fe-Oxides that incorporate an additional minor Cu component, including Goethite, Limonite, Hematite, and Magnetite		

SEM-EDS: Hypermap Results Image Extension

Measurement Conditions

High Voltage:1Pixels:4Measurment Time:1SDD:1Dwell time:4FOV:1Pixel size:4Fields:3Magnification:2

15 kV 4800x4788 1568 min 10 mm² 4096 μs 19.0 mm 4.1 μm 308 (30x40) 250x

SEM-EDS: Hypermap Results Minor Elements – Maximum Pixel Spectrum

SEM-EDS: Hypermap Results Image Extension

Measurement Conditions

High Voltage:	15 kV
Pixels:	4800x4788
Measurment Time:	1568 min
SDD:	10 mm²
Dwell time:	4096 µs
FOV:	19.0 mm
Pixel size:	4.1 µm
Fields:	308 (30x40)
Magnification:	250x

SEM-EDS: Hypermap Results Minor Elements – Maximum Pixel Spectrum

SEM-EDS: Hypermap Results Image Extension

Measurement Conditions

High Voltage:	15 kV
Pixels:	3000x2400
Measurment Time:	490 min
SDD:	10 mm ²
Dwell time:	4096 µs
FOV:	4.1 mm
Pixel size:	1.4 µm
Fields:	560 (20x28)
Magnification:	250x

SEM-EDS: Hypermap Results Line Scans

Measurement Conditions

High Voltage:	15 kV
Pixels:	3000x2400
Measurment Time:	490 min
SDD:	10 mm²
Dwell time:	4096 µs
FOV:	4.1 mm
Pixel size:	1.4 µm
Fields:	560 (20x28)
Magnification:	250x

SEM-EDS: Hypermap Results Line Scans

SEM-EDS: Hypermap Results Line Scans

Geological Applications: Igneous Volcanic Extrusive

Measurement Conditions:

High Voltage: Pixels: Measurment Time: SDD:

15 kV 8800x5600 616 min 10 mm² Dwell time: FOV: Pixel size: Fields: Magnification:

23 μs 17.8 mm 4.1 μm 308 (22x14) 250x

SEM-EDS: Hypermap Results **Image Extension**

Со

7

SEM-EDS: Hypermap Results Each pixel can be quantified

CaO

FeO

5

20

0

1

2

3

4

Energy [keV]

19,68

10,28

100,00

20

1

2

3

4

Energy [keV]

10,61

77,29

100,00

TiO2

FeO

5

SEM-EDS: Hypermap Results Quantified Map (Qmap)

Qmap shows false colour elemental distribution of Ca

33

10,0% 8,3% 6,5% 4,7% < 2,5%

SEM-EDS: Hypermap Results Quantified Map (Qmap)

Qmap displays elemental mass% distribution over the entire sample

Top: Fe

11,5% 11,0% 10,5% 10.0% 9.6% 9,1% 8.6% 8,2% 7.7% 7,2% 6,7% 6.3% 5,8% 5.3% 4,9% 4,4% 3.9% 3,5% 3.0% 2,5% 2,0% 1,6% 1,1%

0,6%

Bottom: Ti

Measurment 1	ime: 77 min
SDD:	10 mm ²
Owell time:	64 µs
FOV:	17.8 mm
Pixel size:	4.1 µm
ields:	308 (22x14)
Magnification:	250x

Measurment Time: 616 min		
SDD:	10 mm ²	
Dwell time:	512 µs	
FOV:	17.8 mm	
Pixel size:	4.1 µm	
Fields:	308 (22x14)	
Magnification:	250x	

Zonation of Mn and Ti are visible in the pyroxene grains using a longer measurment times

SEM-EDS: Hypermap Results Image Extension

Measurement Conditions

High Voltage:	15 kV
Pixels:	4000x7980
Measurment Time:	545 min
SDD:	10 mm ²
Dwell time:	1024 µs
FOV:	16 mm
Pixel size:	4 µm
Fields:	1200 (20x60)
Magnification:	250x

Measurement Conditions

High Voltage: Pixels:	15 kV 4000x7980
Measurment Time:	545 min
SDD:	10 mm²
Dwell time:	1024 µs
FOV:	16 mm
Pixel size:	4 µm
Fields:	1200 (20x60)
Magnification:	250x

SEM-EDS: Hypermap Results Minor Elements – Maximum Pixel Spectrum

ER

SEM-EDS: Hypermap Results Autophase

- Automatic and user-controlled phase analysis options
- Phase ratio and compositional information

× 🖪 🗖		Calculate ph	ases 🗸
AutoPhase settings	5		
Method	Options		Color control
Ilistogram	Sensitivity	30	ж 0.00
O Clusters	Area	0.10%	♦ 1.00
Objects	Edges	10	
		🗌 Edge cleanup	
Phase result list			

SEM-EDS: Hypermap Results Autophase

SEM-EDS: Hypermap Results Autophase

SEM-EDS: Hypermap Results Image Extension

Measurement Conditions

15 kV
2000x3960
134 min
10 mm ²
512 µs
16 mm
8 µm
1200 (20x60)
250x

SEM-EDS: Hypermap Results Image Extension

Measurement Conditions

High Voltage:	15 kV
Pixels:	1800x1200
Measurment Time:	10 min
SDD:	10 mm ²
Dwell time:	1024 µs
FOV:	2.4 mm
Pixel size:	1.4 µm
Fields:	9 (3x3)
Magnification:	250x

SEM-EDS: Hypermap Results Maximum Pixel Spectrum

Measurement Conditions

High Voltage:	15 kV
Pixels:	1800x1200
Measurment Time:	10 min
SDD:	10 mm ²
Dwell time:	1024 µs
FOV:	2.4 mm
Pixel size:	1.4 µm
Fields:	9 (3x3)
Magnification:	250x

Sum Spectrum

SEM-EDS: Hypermap Results Maximum Pixel Spectrum

Deconvolution: Zr and P

Object 1 - Zircon

Object 2 - Monazite

Energy [keV]

1.5

5.0

SEM-EDS: Hypermap Results Deconvolution

Object 1 - Zircon

Object 2 - Monazite

Deconvolution: Zr and P

SEM-EDS: Hypermap Results Quantification

Object 2 Monazite	Concentration (wt%)
P ₂ O ₅	33.35
CaO	4.57
La ₂ O ₃	16,61
Ce ₂ O ₃	34.02
Nd ₂ O ₃	5.61
ThO	5.85

Object 1 Zircon	Concentration (wt%)
SiO ₂	31.94
ZrO ₂	68.06

SEM-EDS: Hypermapping Summary and conclusions

- Hypermapping is capable of capturing detailed high resolution data over large areas.
- The data can be postprocessed and investigated in a variety of forms with the Esprit software including point spectra, line scans, quantification, and autophase.
- There are a variety of parameters that are important in the set-up of the Hypermap. These will affect the analytical time taken and the quality of the information within the hypermap. Such parameters include: High Voltage, Beam Current, SDD Type, Dwell time, Pixel size, Magnification, Working Distance.
- Hypermaps and image extension are compatiable with SEM-EDS, but can also be used with other Bruker SEM products such as the microXRF and the WDS. In addition, the maps can be imported in AMICS, an automated mineralogy software with expanded mineralogical capability.

Micro XRF Webinar in near Future:

Exotic Cu Deposits

Large Area Map Sample Size: Polished Section: 45 x 30 mm

Sample from El Tesoro, Chile. Clearly Defined Elemental and Mineralogical Phases Can identify the presence of trace elements, in this case, Cobalt (Co), Manganese (Mn), Strontium (Sr)

Analytical Parameters:

Tube Voltage: Rh at 50 kV Anode Current: 600 uA Pixel Spacing: 25 um Analytical Time: 101 mins

Top: Elemental Maps; Bottom Left: Mixed Elemental Map; Bottom, Right: X-Ray Intensity Map.

Dr. Tobias Salge

Dr. Eduardo Campos Dr. Ivan Soto Sebastian Eade Javiera Errazuriz Mauricio Galarce Victor Hernández Sebastian Sola Patricia Muñoz Rocio Ibaceta

Are There Any Questions?

Please type in the questions you might have in the Q&A box and press *Send*. More Information

For more information, please contact us:

info.bna@bruker.com

Innovation with Integrity