Element Mapping for Life Science; EDX Analysis of Organic and Soft Materials and their Interface to Minerals in the Electron Microscope

Element Mapping for Life Science; EDX Analysis of Organic and Soft Materials and their Interface to Minerals in the Electron Microscope

Dr. Meiken Falke

Product Manager TEM-EDS, Bruker Nano Analytics

Kevin J. Carpenter, SEM-Microbe Exhibit for Exploratorium kevinjcarpenter.com

Kevin J. Carpenter, SEM-Microbe Exhibit for Exploratorium kevinjcarpenter.com

Bruker: Add colour using element sensitive detectors!

Exploratorium Pier 15 San Francisco

In SEM and TEM ...

Parasites in an ant stomach

SEM: EDS-Double Detector System; Electron microscopy in **color**:

Magnetotactic Bacteria

SDD-EDS in (S)TEM Fe oxidising bacteria ~0.1sr

100

- S - P - Si

Outline

- Intro:
 - EDS for life science?
 - EM: TEM, STEM and T-SEM EDS
- Available Technology
- EDS Data Acquisition, Quantification and Display of Results
 - Various examples demonstrating ESPRIT implementation of qualitative and quantitative analysis for different specimen types
- Element Mapping in Liquid, Ice, *in-situ*
- Complementary Techniques

EDS for Life Science; Suitable Specimens

- Bio-mineralization and related:
 - Bio-minerals (bone, teeth, Fe etc. in tissue, magnetotactic bacteria, crustaceans, egg shells, ...)
 - Bio-mimetics (sea urchin, spider web, wood, collagen ... tissue engineering)
 - Nanoparticles > nanotoxicity vs
 - Useful nanoparticles; cell uptake (drug delivery)
 - Distinguish immunolabels, labels for CLEM
- SDDs have become so sensitive in the low energy region, that the detection of small amounts of bio-relevant light elements (N, P, S, O, ...) is no problem anymore!
- Mapping of element and light element distribution in cells and organelles >
- Mapping of nearly the whole periodic system!
- CLEM (labels), in liquid cells or ice?

Electron Microscopy

- TKD patented holder
- Commercial STEM holders
- Home made versions

Spatial Resolution and Cs-correction

(TEM) EDS Quantification; R. Egerton 1994, line intensity for a particular element line / transition

 I_{x}

number of X-ray photons in a characteristic peak of species A

- *N* number of atoms per unit volume
- *n t* number of atoms per unit area times thickness
- σ ionization cross section (Casnati et al., 1982, Bote et al., 2009)
- ω fluorescence yield (Hubbell et al., 1994, Krause, 1979)

 $\Omega/4\pi$ solid angle / geometrical collection efficiency

- *ε* detection quantum efficiency (window: SLEW or no window or other)
- *N*_e number of incident electrons

+ absorption, fluorescence, other effects...

Electron Microscopy

SEM Scanning EM

- TKD patented holder
- Commercial STEM holders
- Home made versions

TEM EDS for Life Science

Yeast cell: Element mapping of protein (Ag) labels and light (N, O) and heavy (Os, Ag) elements

30 mm², 0.12 sr (Standard EDS); Conventional STEM

TEM EDS for Life Science

Yeast cell: Element mapping of protein (Ag) labels and light (N, O) and heavy (Os, Ag) elements quantitatively

30 mm², 0.12 sr (Standard EDS); Conventional STEM

TEM-EDS for cell analysis at 0.1sr

Malaria parasite: *Plasmodium* in erythrocyte (red blood cell) treated with Chloroquine

Geometric Limitations

Detector (window) quantum efficiency and windows of in situ reaction cells

Detector (window) quantum efficiency and windows of in situ reaction cells

EDXS with 100 mm² windowless oval **ODD** detector area; Nion UltraSTEM, Cs-corrected, high brightness source

EDXS at ~ 0.7 sr. This is the real solid angle for a flat SDD (see wiki below).

Wrong: $100 \text{mm}^2 / (10.5 \text{mm})^2 = 0.91 \text{sr}$.

TOA: 13.4° 100mm²

> Used to analyse dust from space! See next slides ...

EDXS detects single atoms and concentrations ~0.01% C (at.%) Ν 0 F Cu Na A Si Ρ S CI Sys. 96.75 0.84 1.45 0.16 0.11 0.05 0.4 0.08 0.11 0.04 32 wide area.spx per eV C CPS SI Na N O F Cu Al Si P S CI 2

3

2

0

X-ray Energy keV

NRL UltraSTEM200 with Bruker X-flash detector, 60 kV. Concentrations as low as 0.01 atomic % can be explored. *Courtesy Rhonda Stroud, NRL.*

STEM: <u>single atom ID</u> in carbonaceous material, here: nano-diamonds from space; 0.65sr using 100mm² oval detector http://creativecommons.org/licenses/by/4.0/

R. M. Stroud: http://dx.doi.org/10.1063/1.4947002

Sources of foreign signals? Fingerprint on Paper; X-Ray fluorescence in the M4 Tornado

Reaction species sticking to cell walls

Effects:

- Windows etc. > Reduced transmission / quantum efficiency
- Cell Materials > System peaks
- Heat > enlarged peak width and spectrum background / noise

calculate transmission depending on thickness/materials here: http://henke.lbl.gov/optical_constants/filter2.html

EDXS compatible environmental cell design

Zaluzec et al. Microsc. Microanal. (2014) 20 p. 323

EDXS Elemental mapping in liquids

Lewis et al Chem Comm (2014) 50, 70, 10019-22

Cryo-STEM-EDS: M&M 2018 with N.J. Zaluzec and TFS

Figure 1.) Hyperspectral images of site specific heavy metal localization to folds of polyamide film. A) HAADF preXEDS, B) Cu & Zn, C) Cu & Pb, D) Zn & Pb, E) HAADF postXEDS measurement (333 Frames)

Figure 2.) Hyperspectral images of frozen magnetotactic bacteria, Eo:200 kV, 5 pA, Dual X detector. A) HAADF image, B) Fe, C) Carbon, D) Oxygen elemental distributions.

M. Ovsyanko et al M&M 2018

Cryo-STEM-EDS

UK

Drying artefacts for drop casted NP in CCCM, overcome by plunge-freezing, confirmed by EDS.

IOP Conf. Series: Journal of Physics: Conf. Series 902 (2017) 012006 **Cryo-STEM-EDX spectroscopy for the characterisation of** nanoparticles in cell culture media

M Ilett¹, F Bamiduro¹, O Matar¹, A Brown¹, R Brydson¹ and N Hondow¹

Figure 2: STEM-EDX data of DC BT in CCCM. In the EDX spectrum Ca and P are the most prominent peaks but also present were Cl, Mg and Na, all of which spatially match to the coating imaged around the BT nanoparticles.

Cryo-STEM-EDS

Drying artefacts for drop casted NP in CCCM, overcome by plunge-freezing, confirmed by EDS.

IOP Conf. Series: Journal of Physics: Conf. Series **902** (2017) 012006 Cryo-STEM-EDX spectroscopy for the characterisation of nanoparticles in cell culture media

Figure 3: Cryo-EDX spectrum and corresponding EDX maps for BT dispersed in CCCM. Ca and P are present in the spectrum but through cryo analysis no visible Na and Mg peaks were present and the Cl peak was only just distinguishable. Analysis was carried out using a probe current of 40 pA.

Phase Analysis (PCA-based) and (*in situ*) monitoring of particles

EDS for Catalysis, Quantification Pt-Pd Core Shell Particles

mass%, 30 mm², 0.12 sr (Standard EDS); Cs-corr. STEM

EDS for Catalysis, Quantification Pt-Pd Core Shell Particles

mass%, 30 mm², 0.12 sr (Standard EDS); Cs-corr. STEM

Data courtesy: Dogan Ozkaya, Johnson Matthey Technology Center

Electron Microscopy

Detector geometries for EDS Agave Leaf

Agave: Ca-oxalate (CaC₂O₄)

styloid crystal, iching

Analytical conditions:

- 8 kV
- ~0.5 nA
- ~3-5 kcps (each detector)
- 400 x 300 pixel

Detector geometries for EDS Agave Leaf

Agave: Ca-oxalate (CaC₂O₄) styloid crystal, iching

<u>Analytical</u> <u>conditions:</u>

- 8 kV
- ~0.5 nA
- ~3-5 kcps (each detector)
- 400 x 300 pixel

Double detector system Cell analysis: *Beggiatoa alba* on Au/Pd coated polycarbonate filter

2x30mm², 5 kV, 415 pA, 12 kcps, 86 min

2.40

2.60 keV

0.6 0.4 0.2 0.0

2.00

2.20

- Accumulation of nitrate in massive vacuoles
- Oxidize organics to CO₂ for biosynthesis
- Store sulfur
- Peak deconvolution reveals
 distribution of S and P

3.20

3.00

2.80

Double detector system Cell analysis: *Beggiatoa alba* on Au/Pd coated polycarbonate filter

2x30mm², 5 kV, 415 pA, 12 kcps, 86 min

2.40

0.2

2.00

2.20

- Accumulation of nitrate in massive vacuoles
- Oxidize organics to CO₂ for biosynthesis
- Store sulfur
- Peak deconvolution reveals distribution of S and P

3.20

3.00

2.80

2.60 keV

Double detector system Cell analysis: *Beggiatoa alba* on Au/Pd coated polycarbonate filter

2x30mm², 5 kV, 415 pA, 12 kcps, 86 min

- Accumulation of nitrate in massive vacuoles
- Oxidize organics to CO₂ for biosynthesis
- Store sulfur
- Peak deconvolution reveals distribution of S and P

Annular EDS for T-SEM Flat Quad XFlash[®] 5060FQ

7

6

5

3

2

0

Solid Angle (sr)

Distance d (mm)

 N. J. Zaluzec, Detector solid angle Formulas for use in EDS, Microsc. Microanal., 15 (2009) 93
 http://tpm.amc.anl.gov/NJZTools/XEDSSolidAngle.html

10

Annular EDS for T-SEM Flat Quad XFlash[®] 5060FQ

Polymer composite containing organo clay

XFlash Flat QUAD detector 3 kV, 220pA, 10 kcps, 320 s, 1024x768 pixel Single 30mm² XFlash 3 kV, 220pA, 0.8 kcps, 320 s, 1024x768 pixel Shadow effects due to rough surface

Polymer composite containing organo clay

XFlash Flat QUAD detector 3 kV, 220pA, 10 kcps, 320 s, 1024x768 pixel Single 30mm² XFlash 3 kV, 220pA, 0.8 kcps, 320 s, 1024x768 pixel Shadow effects due to rough surface

Polymer composite containing organo clay

XFlash Flat QUAD detector 3 kV, 220pA, 10 kcps, 320 s, 1024x768 pixel Single 30mm² XFlash 3 kV, 220pA, 0.8 kcps, 320 s, 1024x768 pixel Shadow effects due to rough surface

Polymer composite containing organo clay

XFlash Flat QUAD detector 3 kV, 220pA, 10 kcps, 320 s, 1024x768 pixel Single 30mm² XFlash 3 kV, 220pA, 0.8 kcps, 320 s, 1024x768 pixel Shadow effects due to rough surface

Microbial mat with diatoms, Specimen taken from Hot spring

Reddish ovals are diatoms sticking to the bluish biofilm surface

Carbonates (green) are embedded within the biofilm matrix

ÉR

Microbial mat with diatoms, Specimen taken from Hot spring

Reddish ovals are diatoms sticking to the bluish biofilm surface

Carbonates (green) are embedded within the biofilm matrix

ER

Single 30mm² detector

Wasps head with tooth

Flat Quad (annular)

Low vacuum (20 Pa), 6kV, 240 sec, 800 x 600 pixel

Single 30mm² detector

Wasps head with tooth

Flat Quad (annular)

Low vacuum (20 Pa), 6kV, 240 sec, 800 x 600 pixel

Single 30mm² detector

Wasps head with tooth

Flat Quad (annular)

Low vacuum (20 Pa), 6kV, 240 sec, 800 x 600 pixel

Head

Ovipositor (sting and egg-layer)

Ovipositor (sting and egg-layer)

 Low vacuum (20 Pa), 5kV, 30 min, 320 x 240 pixel

Ovipositor (sting and egg-layer)

 Low vacuum (20 Pa), 5kV, 30 min, 320 x 240 pixel

In cooperation with: A. T. Kearsley & G. R. Broad (Natural History Museum, London)

Data courtesy: M. Patzschke (Bruker)

A Sea Urchins Spine Tubercle: bio-mimetics / bio-inspired construction

T. B. Grun, J. H. Nebelsick, PLOS, Sep. 27, 2018, https://doi.org/10.1371/journal.pone.0204432

Lightweight hirachical construction ensures stiffnes, heavy load bearing and flexibility

A Sea Urchins Spine Tubercle: bio-mimetics / bio-inspired construction

https://www.calacademy.org/blogs/2011-philippine-biodiversity-expedition/whenit-comes-to-echinoderm-collagen-there-is-always-a

SE 🚺 CI Ca

wikipedia

SE

Si

Ca

Lightweight hirachical construction ensures stiffnes, heavy load bearing and flexibility

50 um

wikipedia

A Sea Urchins Spine Tubercle: bio-mimetics / bio-inspired construction

https://www.calacademy.org/blogs/2011-philippine-biodiversity-expedition/whenit-comes-to-echinoderm-collagen-there-is-always-a

Lightweight hirachical construction ensures stiffnes, heavy load bearing and flexibility

EBSD for bio (bone, teeth, crustaceans,...): Egg shells; Ostrich: strongest texture but micro-cracks and disorder for chick to get out

Crystallographic orientation distribution map of the

Cross section of an Ostrich egg shell (inner part)

D. Goran (Bruker)

Understanding the early evolution of nervous systems including vision

Ma et al., 2015, Current Biology 25, 2969–2975 http://dx.doi.org/10.1016/j.cub.2015.09.063 Open access under the CC BY-NCND license: http://creativecommons.org/licenses/by-nc-nd/4.0/

K: interpretive drawing of a Cambrian arthropod fossil

A: Direct illumination, C-traces of preserved neural tissue are shown as black

B: Merged C and Fe EDX maps resolve carbon and iron as entirely nonoverlapping

- VP-mode: 30Pa, 10kV
- Stiching 63 fields of view
- each frame 15min, 923nm/p,
- > 500kcps OCR

Data courtesy: T. Salge NHM, Current Biology open access Xiaoya Ma et al.

Electron Microscopy ER SEM: "T-SEM" TEM STEM SEM Scanning TEM Scanning EM Stray radiation **Fixing clamp** aperture TKD patented holder Commercial STEM holders Home made versions

59

T-SEM-EDS of NP Typical Overview

Analysis: T. Salge (Bruker/NHM)

T-SEM-EDX of fluorescent core shell NP; Silica nanoparticles Alexa® dye coated

XFlash FlatQUAD, 5 kV, 520 pA, 22.5 kcps, 250x250 pixel, 2 nm pixel size, 377 s

K. Natte, T. Behnke, G. Orts-Gil, C. Würth, J. F. Friedrich, W. Österle and U. Resch-Genger, J Nanopart Res, 2012, 14, 680

T-SEM-EDX of fluorescent core shell NP; Silica nanoparticles Alexa® dye coated

XFlash FlatQUAD, 5 kV, 520 pA , 22.5 kcps, 250x250 pixel, 2 nm pixel size, 377 s

K. Natte, T. Behnke, G. Orts-Gil, C. Würth, J. F. Friedrich, W. Österle and U. Resch-Genger, J Nanopart Res, 2012, 14, 680;

Analysis: T. Salge, M. Falke; Hitachi SEM

Analysis: T. Salge (Bruker/NHM)

= R

×

1

4

•

(K)

(K)

(K)

(L)

(L)

P159

Hollow

1109

617

253

C 1952

0 1133

Si

Cu

Zn

9

T-SEM-EDX of SiO₂ NP;

PA: Classification, Statistics

SEM-EDX of Au-NP on TiO₂ Sponge-like coating for implants Overview > Particle Statistics!

Nanotoxicity

Au-NP to avoid inflamation around implant:

NP change surface potential, Settling bacteria get "electrocuted".

For successful tissue growth it is very important to judge the distribution of the NP and compare it to fluorescence light microscopy.

> Statistical analysis!

T. Yang et al., Colloids and Surfaces B: 145, 597 (2016).

EDS Characterization; Possible Steps: From mm via nm to single atoms

- SEM/T-SEM
- > Overview / embedding/ statistics from mm to nm scale, Low vacuum,
- > Use multiple/annular detectors
- > Combine with other analysis techniques on SEM (EBSD/TKD, µXRF)
- Standard / Cs-corrected SEM/STEM + Standard EDS
- Q-Mapping in at% at nm spatial resolution, in-situ, liquids, ice ... force
- Cs-corr. STEM + high brightness + high Ω EDS
- > Single atoms
- > Combine with EELS, CL, diffr. ...
- > in situ (liquids, ice, gases, temp., force)

Innovation with Integrity

Copyright © Bruker Corporation. All rights reserved. www.bruker.com