
Signal region detection is a routine task in NMR spectroscopy, 
however, it is one of the few processing steps that is typically 
performed manually. This is due to the fact that the method 
implemented in TopSpin to carry out this task automatically 
often requires fine-tuning of multiple parameters to obtain sat-
isfactory results. This limitation typically prevents the effective 
integration of multiple, diverse spectra in an automatic way, 
and favours the use of the manual process. Recently, deep 
learning techniques have emerged as a powerful tool for rec-
ognition and segmentation tasks, proving to be able to reach 
and surpass human-level performance in a fraction of the time. 
These techniques could potentially lead to a fully automatic 
extraction and analysis of the information contained in NMR 
spectra. Here, we make the first step toward this goal. We 
introduce sigreg, a deep learning algorithm for signal region 
detection in 1D 1H NMR spectra. We show that this method 
is robust and provides better performance than current Bruker 
solutions, achieving excellent accuracy for spectra obtained in 
a wide range of base frequencies without requiring any inputs 
from the user side.  

From the early days of nuclear magnetic resonance (NMR) it 
has been known that NMR signals yield quantitative informa-
tion if the right experimental conditions are met. [1] [2] [3] Rela-
tive concentrations of magnetically distinct nuclei are obtained 
by integrating the areas under the signals in an NMR spec-
trum, and absolute concentrations can be calculated by using 
a standard with a known concentration. This is an important 
property of NMR, which has contributed to the widespread 
use that NMR has achieved over the years, and is today at 
the base of many NMR applications such as qNMR, structure 
verification, and structure elucidation. 
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All these processes rely on the accurate determination of the 
limits of signal regions to integrate, which can be manually 
defined directly at the spectrometer using the “manual-integra-
tion” module available in TopSpin. This module is easy to use 
and straightforward enough to even allow beginners to obtain 
integral values. However, the integration of multiple datasets or 
of complex spectra using this method can be time-consuming. 
An alternative is the automatic integration of NMR spectra, 
which can be done in TopSpin using the int auto command. 
However, using this method, the quality of the final result 
strongly depends on several parameters that need to be tuned 
by the user. This often prevents users from automatically inte-
grating spectra that have different features using the same set 
of parameters, and the time required to optimize a new set 
encourages the use of manual integration.

Over the past year, deep learning has shown to be able to 
achieve excellent results in recognition and segmentation 
tasks, and, in particular, in the field of NMR spectroscopy it 
has been used to support users with spectra processing and 
interpretation. [4] [5] With applications such as peak picking in 
2D NMR spectra [6] or structure verification, [7] deep learning 
has proven to have the potential to obtain human-like results 
in the processing and analysis of NMR spectra. Ideally, deep 
learning could be implemented in the full NMR workflow, from 
the acquisition of NMR data to the extraction of the results.  
At Bruker we are committed to bringing this innovation to our 
customers. 



TopSpin version 4.0.9. For int auto, the standards parameters 
were used for all spectra. For sigreg, the signal intensity was 
normalized by setting the intensity of the highest peak in each 
spectrum equal to 1 before signal region detection.
To confirm our finding, we have also tested the performance 
against 10,000 artificially generated 1H NMR spectra. In this 
case, we only have tested sigreg and not int auto.  
To measure the accuracy of the model we have used the F1 
score. [6] This score is based both on precision (how many 
points in the spectrum detected as signal regions detected are 
true signal regions) and on recall (how many points of the true 
signal regions are detected by the model), and it is defined as:

Figure 2Here, we introduce sigreg, the result of our initial steps in this 
field. sigreg is the first deep-learning-based command avail-
able in TopSpin, and it performs fully automatic, parameter-
free, signal region detection in 1D 1H NMR spectra. This is 
also one of the first deep learning applications that focus on 
signal region detection in NMR spectra. We show that sigreg 
provides significantly better results than int auto for 1H NMR 
spectra acquired in a wide range of base frequencies (from 80 
to 800 MHz), without requiring the intervention of the user. 
We test the limits of detection using simple artificial spectra, 
and we show examples of the performance of this method on 
experimental datasets with different features (e.g. with high 
noise, phase distortion, broad peaks, and large solvent signals).

Methods

To develop sigreg we have used supervised machine learning. 
The deep learning algorithm was built from scratch, and it is 
a fully convolutional neural network inspired by the U-net. [5] 
To train and validate the algorithm we have used 500,000 
artificial spectra generated using a home-built code, carefully 
developed to provide realistically looking 1H NMR spectra. 
Spectra were generated using base frequencies ranging from 
80 to 800 MHz. The signal regions were labelled during spec-
tra generation and consist only of the main peaks, leaving the 
13C satellites unlabelled. The signal intensity was normalized 
in each spectrum by setting the intensity of the highest peak 
equal to 1.

The limits of detection were tested using artificial 400 MHz 
spectra with one signal (singlet), by evaluating the detection of 
the signal regions as a function of the signal and noise intensi-
ties. The spectra were described by 16,384 points and have a 
width of 15.5 ppm. The singlet was placed in the middle of the 
spectrum, and it has a full width at half height of 2 Hz (Gauss-
ian broadening). We have generated the reference spectrum 
and evaluated the number of points to be labelled as signal  
(Areatrue). Then, we have varied the signal intensity while 
keeping the noise constant (and vice versa), and evaluated the 
number of points detected by sigreg as signal (Areasigreg). Each 
spectrum (e.g. each signal-noise combination) was created 
100 times, and the ratio Areasigreg/Areatrue was calculated using 
the mean Areasigreg for all 100 experiments.

The model performance was tested using 100 experimental 
1H NMR spectra labelled by Bruker NMR experts. The spectra 
were labelled by several experts, and without giving any pre-
set rule (e.g. each expert might have its own labelling style). 
They should thus represent, on average, the typical result 
obtained by NMR users. 25 out of 100 spectra were acquired 
at 80 MHz base frequency, using the Bruker Fourier 80 bench-
top NMR instrument. The other spectra were acquired at base 
frequencies ranging from 300 to 800 MHz, with the major-
ity being acquired at 400 MHz. For these spectra, we have 
extracted the results obtained using sigreg and int auto using 

where

and

Limits of detection of sigreg as a function of signal intensities (a) and noise 
intensities (b). Values of Areasigreg/Areatrue close to 1 indicate that sigreg fully 
detects the signals, while values close to 0 indicate that the signal (or at least part of 
it) is not labelled as signal region. 

Figure 1



Results and Discussion

Figure 1 shows the limits of detection of sigreg tested using 
the single-peak spectra described in the methods section. 
In Figure 1a, the fraction of the signal detected by sigreg as 
signal is plotted as a function of the signal intensity for sev-
eral noise values. This test shows for a given noise level, how 
intense should the signal be to be detected by sigreg. For high 
noise values (Inoise = 1), the area detected by sigreg is much 
smaller than Areatrue, showing that we do not correctly detect 
the signal in those spectra. This is expected, considering that 
with the highest signal intensity (Isignal = 1), the noise and the 
signal are of the same order of magnitude. With lower noise 
values, sigreg starts to correctly detect the signal. Overall, we 
observe that, in these test-spectra, sigreg finds signals that 
have intensities at least one order of magnitude larger than the 
noise value. This is true up to a noise intensity equal to 10-5, 
below which the limit of detection seems to be due to the 
signal intensity rather than the SNR. The lowest signal inten-
sity detected in this model spectra was about 2·10-4 relative to 
the highest peak in the spectrum, suggesting that this is the 
limit of detection of the current sigreg version.

Figure 1b shows the area detected by sigreg as a function 
of the noise level, for several signal intensities. We can again 
see that we are able to successfully detect signals that are 
about 1 order of magnitude larger than the noise level, with 
intensities as low as 0.001. Thus, this test suggests that sigreg 
should not detect signals that are less than 10 times stronger 
than the noise level. In these test-spectra, signals with higher 
intensities are detected by sigreg, even when these signals are 
1000 times less intense than the highest peak in the spectrum. 
Note that these tests were made on simple artificial spectra, 
and that in more complex spectra (e.g. composed by an higher 
number of signal) these numbers might vary.

While this test is a useful indication of the detection limits of 
the current sigreg version, it does not test how the model per-
forms on experimental results. To do so, we have compared 
the sigreg results with the signal regions selected by Bruker 
NMR experts of 100 1H 1D NMR experimental spectra (Figure 
2). The same comparison was also carried out for int auto, to 
assess the performance of the previously existing methods to 
detect signal regions. 

Figure 2a and b compare sigreg, int auto and expert results in 
terms of number of signals selected in each spectrum. From 
the histograms of Figure 2a we immediately see that in most 
of the experimental spectra the number of signals detected 
using sigreg agrees with the one found by the experts, both 
for the 80 MHz spectra (in orange in the figure) and the high 
field NMR spectra (300+ MHz). Using int auto, instead, the 
agreement between the number of manually and automati-
cally detected signals is much lower. The average difference 
between the absolute number of signals found by the experts 

Performance of sigreg and int auto on 100 experimental 1H NMR spectra. (a) 
Histograms showing the difference between the number of signals found by the 
experts and the ones detected with sigreg (left) and int auto (right). (b) Scatter 
plots that shows the correlation between the number of signals found by the experts 
and the ones detected with sigreg (left) and int auto (right). The black dashed lines 
represent a perfect correlation. (c) F1 scores achieved with sigreg (left) and int auto 
(right).

Performance of sigreg on 10,000 artificially generated 1H NMR spectra. (a) 
Histogram showing the difference between the number of signals in the spectra and 
the ones detected with sigreg. (b) Scatter plot that shows the correlation between 
the number of signals in the spectra and the ones detected with sigreg. The black 
dashed line represents a perfect correlation. (c) F1 scores achieved with sigreg.

Figure 2

Figure 3



and the ones detected automatically is 2.1 for sigreg (1 for 
the 80 MHz and 2.5 for the 300+ MHz) and 4.7 for int auto 
(1.9 for the 80 MHz and 5.6 for the 300+ MHz). The spread-
ing of the int auto results is also visibly much higher than 
the sigreg one.  

The scatter plots in Figure 2b show the correlation of 
the number of signals found by the experts and the one 
detected automatically. Again, sigreg shows a better cor-
relation compared to int auto.

While the number of signals detected by the algorithm 
is a good indication of how the algorithm works and how 
it performs compared to NMR users, it does not give us 
information on how many signals are correctly detected. 
The algorithms and the users, indeed, might easily provide 
a different number of signals by splitting a signal region or 
grouping multiple regions together. Thus, to estimate the 
accuracy of these models we have calculated the F1 score 
between the expert and the automatically detected signal 
regions.

Figure 2c shows the F1 scores obtained for the 100 experi-
mental 1H 1D NMR spectra analyzed here. With an average 
F1 score of 94.8% (the average of the 80 MHz and 300+ 
MHz are both 94.8%) sigreg shows an overall higher accu-
racy and lower field dependence than int auto, which has 
an average F1 score of 87.1 (93.4% for 80 MHz and 85.0% 
for 300+ MHz).

The accuracy of sigreg was confirmed also on 10,000 arti-
ficially generated 1H 1D NMR spectra, as shown in Figure 
3. The histogram of Figure 3a and the scatterplot of Figure 
3b show good agreement between the number of signals 
in the spectra and the ones detected by sigreg. The average 
difference of the number of signals detected is 0.9 (with 
nearly 5000 spectra with the correct number of signals 
detected), the R2 value of the correlation is 0.91, and the 
average F1 score is 97.8%. Most of the outliers are spectra 
where the solvent signal is more than 1000 times more 
intense than the other signals. 

To conclude, we present in Figure 4 the results obtained 
by integrating the signal regions of a few 1H 1D NMR 
experimental spectra using sigreg. Figure 4a shows the 
result obtained on a relatively crowded NMR spectrum, the 
spectrum of cyclosporin which shows more than 30 signal 
regions. Figures 4b-4e show the results obtained on spec-
tra characterized by having broad peaks (Figure 4b), low 
SNR (Figure 4c), high intensity of the solvent signal (Figure 
4d), and phase distortion (Figure 4e). Note that despite the 
good results achieved with the phase distorted spectrum 
of Figure 4e, sigreg was not developed to work on phase 
distorted spectra, and we suggest to apply phase correc-
tion before using this command.

Examples of experimental results obtained with sigreg for (a) a spectrum with a 
relatively high number of signals, (b) a spectrum with broad peaks, (c) a spectrum with 
high solvent intensity, (d) a spectrum with low signal-to-noise ratio, and (e) a phase 
distorted spectrum

Figure 4
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Conclusions

In summary, we have presented here a new method for 
signal region detection in 1H 1D NMR spectra. This method 
uses deep learning to detect signal regions and is available 
starting from TopSpin v. 4.0.9. We have shown that this 
method offers great advantages compared to the previously 
existing method (int auto), such as having higher accuracy 
and being parameter-free. 

Overall, the performance of sigreg is good. We have shown 
on 100 experimental 1H NMR spectra that the signal regions 
detected with this method agree well with the ones detected 
by NMR experts (the F1 score is 94.8 %). This algorithm has 
shown to be quite robust, and to perform well on spectra 
obtained in a wide range of base frequencies (ranging from 
80 to 800 MHz), and on spectra with different features (e.g. 
spectra that have many resonances, broad peaks, low SNR, 
high intensity of the solvent signal, or phase distortion). 
While this is only the first release of this algorithm and this 
method will be developed even further, sigreg is already 
robust enough to be used routinely to integrate phase and 
baseline corrected NMR spectra and to be the method of 
choice for the automatic integration of 1D 1H NMR spectra.

Remarks 

Note that sigreg can be easily implemented in au programs 
using the macro  ‘SIGREG’ for a full automatization of your 
NMR routines.


