

Simulations of Solution Spectra using SimFonia

SimFonia Features

- Fast, easy-to-use Simulation Program. Runs under Microsoft Windows.
- The simulation algorithm is based upon the perturbation theory
- Choice of solution or powder spectra
- Allows for elementary data processing
- Easy transfer of simulated spectra to WIN-EPR for further post-processing
- Efficient (FT) Fourier Transform algorithm for multiline spectra
- Simulation of the m_i dependent linewidth by a polynomial approximation
- Up to 20 inequivalent nuclei with a large number of equivalent nuclei
- The Powder simulation program simulate spectra for electron spin 1/2 to spin 7/2. For spins greater than 1/2, D and E zero-field splitting terms are implemented.

Starting a simulation, Instrument parameters

WINEPR SimFonia - [Sim4]	•			
File Parameter Operation Proc	essing View Options Window	Info		
) & 글 등 등 🔹 🗢 후 🗆 Solu	tion 🖵 📕 5 📠 💿 📖			
10^3]				
2.50_	Instrument Parameter			×
	Operator: Comment:		Date: 07/22/2022	Time: 18:07
	 Automatic field detection 		🔲 <u>S</u> ignal Channel	
	Center Field 3480.00 Sweep Width 50.00 Resolution in X 1024	[G] [G] •	Modulation Amplitude Time Constant Conversion Time	0.10 + [G] 1.25 + [msec] 5.12 + [msec]
	MW Frequency 9.7500	[GHz]	Harmonic	1

Starting a simulation, Hamiltonian parameters

	Element-Data	× 1
	Nuclear Isotope: Natural Abundance [%] Nuclear Spin	
Hamiltonian Parameters	Show Pure Elements Only ENDOR Freq for 3.5 kG Field [MHz]	
Nucleus	Include Radioactive Isotopes Quadrup. Moment (multipl. of e * 10E-24 cm²)	
Element #Nuclei Isotope Spin Iso.Abd. g-Factor A [G]	Current Element:	
	Li Be Na Mg	
	K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe	Itonian Parameters
	Cs Ba La Hf Ta W Re Os Ir Pt Au Hg TI Pb Bi Po At Rn	aus
	Fr Ra Ac Ku Ha Ce Pr Nd Pm Sm Fu Gd Th Dv Ho Fr Tm Yo Lu	nent #Nuclei Isotope Spin Iso.Abd. g-Factor A [G] 💌
	Th Pa U Np Pu Am Cm BK Cf Es Fm Md No Lr	
	Ok Cancel	
		Sn 1 119 1/2 + 8.60 -2.094560
_Get Element Insert Delete		117 1/2 + 7.75 -2.002080
		0.38 -1.837700
Electron		
g-Factor 2.002320 Third Order Ok Cancel		Get Element Delete Delete
		- Electron,,
		g-Factor 2.002320 Third Order Ok Cancel

Starting a simulation, Shape parameters

Sa WIN	IEPR SimF	onia - [Si	im3]																				—	\Box
File	Paramet	er Opera	ation Pro	ocessing	View O	ptions V	Vindow I	nfo																
0 \$2 1		\$ X ≏ ?	⊽ 🛛 So	lution 🔻	IH	S RUN																		
[*10°3] 2.50																								
2.30_																								
2.25_																								
2.00																								
1.75_																								
1 50																								
1.50_																								
1.25_																								
1.00_																								
0.75_																								
0.50																								
0.25																								
0.20																								
0.00_																								
-0.25_																								
-0.50																								
-0.75_																								
-1.00																								
1.00_																								
-1.25_																								
-1.50_																								
-1.75																								
-2.00_																								
-2.25																								
-2.50_	3456	3458	3460	3462	3464	3466	3468	3470	3472	3474	3476	3478	3480	3482	3484	3486	3488	3490	3492	3494	3496	3498	3500	3502

Further processing

WINEPR SimFonia - [Sim4]

Simulating an experimental spectrum. Galvinoxyl

12 methyl protons do not show resolved splitting, but cause line broadening

$$a_2 \approx 4 \times a_1$$

Т

1

Assignment of hyperfine splitting values

Simulating an experimental spectrum. Getting instrumental parameters from experiment

Instrument Parameter			×
Operator: Boris		Date: 05/15 Time:	17:42
Comment: 'PDT_	_CS2_Rt'		
Automatic field detection	Get Field/Sweep	Signal Channel	
Center Field	3315.00 [G]	Modulation Amplitude 0.10	G]
Sweep Width	39.99 [G]	Time Constant	msec]
Resolution in $ imes$	2048	Conversion Time 40.96	msec]
MW Frequency	9.3123 [GHz]	Harmonic 1	
Save as Default Get E	xp. Parameters	OK Canc	el

Simulating an experimental spectrum. Getting numbers from experiment

Hamiltonian Param	eters					×
Nucleus						
Element #Nuclei	Isotope	Spin	lso.Abd.	g-Factor	A [G]	~
N 1	14	1	99.64	0.403761		Exp
	15	1/2	0.36	-0.566378		Ехр
		0 🔺				Exp
Clear		0 🔺				Exp
	1				1	
Get Element				Insert	Delete	
Electron		1				
g-Factor 2.002320	Exp	Thire	1 Order	Ok	Cancel	
g . co.o.			10100			

win	NEPR Sim	Fonia - [S	im7]																				_	
File File	Parame	eter Oper	ation Pro	ocessing	View O	ptions \	Window I	Info																
	ê 🛛 🌢	\$ X ≏	⊽ 🗆 So	olution	- IH	S RUN (
[*10°3] 250																								
2.30_																								
2.00_																								
1.75_																								
1.50_																								
1.25_																								
1.00_																								
0.73_																								
0.25_																								
0.00																								
-0.25_																								
-0.50_																								
-0.75																								
-1.00_																								
-1.50_																								
-1.75																								
-2.00_																								
-2.25																								
-2.50_																								
	3456	3458	3460	3462	3464	3466	3468	3470	3472	3474	3476	3478	3480	3482	3484	3486	3488	3490	3492	3494	3496	3498	3500	3502

Simulating an experimental spectrum. Duro-semiquinone anion

Duro-semiquinone anion – alternating linewidth

File Parameter Operation Processing View Options Window Info - 8 治☞모종 ◇×스▽□ Solution ▼ IHS 🧱 ^ 3] 10 35_ 30_ 25_ 20_ 15_ 10_ 5_ 0_ -5_ 10_ 15_ 20_ 25_ 30_ 35_ 3520 3496 3498 3500 3502 3504 3506 3508 3510 3512 3514 3516 3518 3522 3524 3526 3528 [G]

Simulating an experimental spectrum. Di-tert-butyl nitroxide

Three main lines from HF splitting on ^{14}N . I=1.

Satellite lines:

¹⁵N – natural abundance 0.37%. I=1/2.

¹³C – natural abundance 1.07%. I=1/2. Eight atoms.

¹⁷O - natural abundance 0.038%. **I=5/2**. Can be neglected.

	eter Operation P	rocessing view	v Options v	Mindow Inte	0															
[×10° 3]	VX4VI S	Solution •		er <u>be</u>																
2.50_																				
2.25_																				
2.00																				
1.75																				
1.10																				
1.50_																				
1.25_																				
1.00_																				
0.75_																				
0.50																				
0.25_																				
0.00_																				
-0.25																				
0.50																				
-0.30																				
-0.75_																				
-1.00_																				
-1.25_																				
-1.50_																				
-1.75_																				
-2.00_																				
-2.25																				
2.50																				
-2.30																			2502	
3456	3458 3460	3462 34	64 3466	3468	3470 3472	3474	347b	3478	3480	3482	3484	3486	3488	3490	3492	3494	349b	3498	3500	3502
																	10111			

E.8.5. 88

Simulating an experimental spectrum. Di-tert-butyl nitroxide

Simulating an experimental spectrum. Tempo in water/glycerol at 230K

Tempo in water/glycerol at 230K. Incomplete motional averaging

In the powder spectrum a position of each line for individual θ , ϕ orientation is given:

The more the spread the faster motion we need to motionally-narrow the line.

That is why -1 line is always broader and less intense for nitroxide spectra with motion effects!

			··· [1																					ر الله ال
	IEPR SIMI	Fonia - [3	simoj																					
<u>F</u> ile	Parame	eter <u>O</u> per	ration Pro	ocessing	<u>V</u> iew <u>O</u>	ptions <u>\</u>	<u>M</u> indow	Info																
<u>D</u> \$6 🖬		\$ X ≏	⊽ □ So	olution	IH	S RUN (
[*10 [°] 3]																								
2.50_																								
2.25																								
2.00																								
2.00_																								
1.75_																								
1.50_																								
1.75																								
1.23_																								
1.00_																								
0.75																								
0.50																								
0.00_																								
0.25_																								
0.00																								
0.25																								
-0.23_																								
-0.50_																								
-0.75																								
-1.00																								
1.00_																								
-1.25_																								
-1.50_																								
-1 75																								
1.10_																								
-2.00_																								
-2.25																								
-2.50																								
	3456	3458	3460	3462	3464	3466	3468	3470	3472	3474	3476	3478	3480	3482	3484	3486	3488	3490	3492	3494	3496	3498	3500	3502

Simulating an experimental spectrum. Tempo in water/glycerol at 230K

1

Simulating an experimental spectrum. Testing the model

Shape Parameters
Lorentzian/Gaussian0.00Linewidth0.10[G]
Tumbling Effect Nucleus:
linewidth = a + b*m + c*m^2
a: 3.3984 b: -1.2891 c: 1.9922
calculate Constants
Ok Cancel

$$\mathbf{B} = \frac{1}{2} \left[\sqrt{\frac{\mathbf{I}(0)}{\mathbf{I}(+1)}} - \sqrt{\frac{\mathbf{I}(0)}{\mathbf{I}(-1)}} \right] = -1.51$$

$$C = \frac{1}{2} \left[\sqrt{\frac{I(0)}{I(+1)}} + \sqrt{\frac{I(0)}{I(-1)}} - 2 \right] = 2.01$$

τ from C:	2.1 ns
τ from the I(+1)/I(-1) formula applied to the experimental spectrum	2.4 ns
τ from the simulations based on stochastic Liouville equation	1.7 ns

WINEPR SimFonia - [Sim5]	
--------------------------	--

File Parameter Operation Processing View Options Window Info

ntensity

Any questions? Thank you!

Innovation with Integrity