

Simulations of Powder Spectra using SimFonia

Use Powder option only if no molecular motion is present: Powder and Glass Spectra

The calculation algorithm is based on the perturbation theory: - Use 'higher order' option if large hyperfine splitting are present (e.g Mn²⁺, VO²⁺)

Only allowed transitions are simulated – no forbidden transitions

The Powder simulation program simulate spectra for electron spin 1/2 to spin 7/2. For spins greater than 1/2, D and E zero-field splitting terms are implemented.

No limitations on nuclear spin

Starting a simulation, Instrument parameters

WI	NEPR SimFonia - [S	Sim4]								
🕻 Fi	le Parameter Ope	ration Proc	essing V	iew Optic	ons Wind	low I	nfo			
۱ B	🛎 🖬 🎒 🔹 × 4	⊽ 🖳 Solu	ition 🔻	I H S	RUN 💿					
10^3	1									
2.50	simionia - [Simi)									
Para	ameter Operation P		Instrument P	arameter						×
2	Solution		Operator:				 Date: 07/26	/2022	Time:	10:08
\checkmark	Powder		Comment:							,
	Instrument									
	Hamiltonian		Automatic	field detection			Signal Ch	annel		
	Shape		Center Fi	əld	60600.00	[G]	Modulation A	mplitude	0.10	(G]
			Sweep W	idth	500.00	[G]	Time Constai	nt	1.25	[msec]
			Resolutio	n in X	1024 🝷		Conversion Ti	me	5.12	(msec)
			MW Frequ	Jency	170.0000	[GHz]	Harmonic		1	•
			Save as Det	ault				ОК	1	Cancel

 \bigotimes

Starting a simulation, Hamiltonian parameters

Hamilto	nian Paramet	ers				×
- Nucleus	;			Units Gau	uss 🔻	1
А(х.х)	0.00	P(x.x)	0.00	g(x.x)	0.00	
A(x,y)	0.00	P(x.y)	0.00	g(x.y)	0.00	
A(x,z)	0.00	P(x,z)	0.00	g(x.z)	0.00	
A(y.y)	0.00	P(y.y)	0.00	g(y.y)	0.00	
A(y,z)	0.00	P(y,z)	0.00	g(y.z)	0.00	
A(z,z)	0.00	P(z,z)	0.00	g(z.z)	0.00	
🗖 Sec	ond Order	# of Nuc	lei 0	Spin	0 🔺	•
Electro	n					
g(x)	2.002320	Spin	1/2 🔺	Numbe	er of Theta 10)
g(y)	2.002320	D	0.00	Numbe	r of Phi 1	
g(z)	2.002320	E	0.00			
				OK		Incel

Starting a simulation, Shape parameters

Line Shape Parameter: 0 =Lorentzian, 1 – Gaussian

Any value α in between is a Voigt line shape with a fraction of Gaussian equal α and fraction of Lorentzian equal (1- α)

Anisotropic line width:

win	NEPR Sim	Fonia - [Sim1]																				_	Ē
File File	e Parame	eter Ope	eration Pr	ocessing	View O	ptions V	Vindow	Info																
DA	€∎⊜	\$ X ≏	. ▽ □ Sc	olution	▼ IH	S RUN G																		
[*10 [^] 3]																								
2.50_																								
2.25																								
2 00																								
1.75_																								
1.50_																								
1.25																								
1.00																								
1.00_																								
0.75_																								
0.50_																								
0.25_																								
0.00																								
0.00_																								
-0.25_																								
-0.50_																								
-0.75																								
-1.00																								
1.00_																								
-1.25_																								
-1.50_																								
-1.75																								
-2.00																								
2.00_																								
-2.25_																								
-2.50_																								
	3456	3458	3460	3462	3464	3466	3468	3470	3472	3474	3476	3478	3480	3482	3484	3486	3488	3490	3492	3494	3496	3498	3500	3502

NULL A

WINEPR Si	mFonia - [Sim1]																			- 6
👫 File Parar	meter Operation	Processing	g View Op	ptions Wi	indow Inf	0														
□₩₽₽₽		Powder	▼ IH	5 <u>RUN</u>	LUIN															
[*10 [°] 3]								~												
8_								\bigwedge												
7_			\wedge																	
			()																	
0_ -																				
5_																				
4_			\																	
3																				
2_			/ `																	
1_						\wedge	$ \int$													
0_			/.																	
-1																		(
										į	/						$\langle \rangle$	/		
-2_																				
-3_							<u> </u>										ý			
-4_									\sim											
-5									\											
-																				
-6_																				
-7_																				
-8_																				
_9																				
										\backslash										
-10_	2425 2420	2425	2440		450 2	455 24		2470	2475	2400	2405	2400	2405	2500	2505	2510	2515	2520	2525	2520
Simulation do	1420 J430	J4JJ	J440 (J44J J	14JU J	400 04	100 3403	3470	J475	J40V	J40J	J430	J433	3300	3303	3310	3313	NUM	JJ23	3330

simulation done!

Further processing

WINEPR SimFonia - [Sim4]

The number of θ and ϕ orientations

Two angles for summation: θ and ϕ . (# θ)×(# ϕ) individual lines

To make a smooth line in the simulation we should sum enough of the orientations corresponding to these angles.

© 2022 Brut 1.08.2022

9 1 1

Choosing θ and ϕ values

 θ and/or ϕ are too small – distortions and artifacts in spectra

 θ and/or ϕ are too large – the calculation may take time

The ultimate criterion for sufficient # θ and # ϕ is the absence of line shape changes with an increase in these numbers.

There are some rules to keep θ and ϕ values right and the computation time low:

- -The ϕ value can be set lower for symmetric or nearly symmetric g- and A-matrices.
- For an axially symmetric g-factor the parallel axis should always be the z axis. Set $g_z = g_{\parallel}$ and $A_z = A_{\parallel}$ In this case we can set the number of $\phi = 1$.
- The narrower the lines and the more resolved is the spectrum, the more θ and ϕ values we need

Simulating an experimental spectrum: Cu(en)₂(ClO₄)₂

The line shape is defined by the g-factor anisotropy. An Axially Symmetric g-Factor with $g_1 > g_1$.

WINEPR Sim	Fonia - [S	im1]																				—	Ē
👫 File Param	eter Oper	ration Proc	essing Vi	iew Opti	ions Wir	ndow Inf	fo																
0&285	\$ X ≏	⊽ 🖳 Solu	ition 🔻	IHS	RUN 💿																		
[*10^3]																							
2.50_																							
2.25_																							
2.00_																							
1.75_																							
1.50_																							
1.25_																							
1.00_																							
0.75_																							
0.50_																							
0.25_																							
0.00_																							
-0.25_																							
-0.50_																							
-0.75_																							
-1.00_																							
-1.25_																							
-1.50_																							
-1.75_																							
-2.00_																							
-2.25_																							
-2.50_																							
3456	3458	3460	3462 3	3464	3466	3468	3470	3472	3474	3476	3478	3480	3482	3484	3486	3488	3490	3492	3494	3496	3498	3500	3502
																				NUM			

Simulating an experimental spectrum: $Cu(en)_2(ClO_4)_2$

WINEPR SimFonia - [Sim1]	
📠 File Parameter Operation Processing View Options Window Info	- <i>B</i> ×
+ - ★ / Factor ▼ 1.40000 /0 10^-2 ×10 ↓	
[*10^3]	
-2_	
-4_	
-5_	
-6	
-7_	
- _9_	
-10	
-12_	
2700 2750 2800 2850 2900 2950 3000 3050 3100 3150 3200 3250 3300 3350 3400 3450 3500 3550 36	00 3650 [G]
NUM	

Iron cofactor in myoglobin

An axially symmetric g-factor with $g_{\parallel} < g_{\perp}$ and a very large difference between these values

win win	EPR SimF	Fonia - [S	im3]																				-	ß
File	Parame	ter Oper	ation Pro	ocessing	View Op	otions W	indow In	nfo																
08	8	$\circ \times \wedge $	⊽ □ So	olution 🔻	, IH	5 🔤	驟																	
[×10°3]																								
2.50_																								
2.25_																								
2.00																								
1.75																								
1.50_																								
1.25_																								
1.00_																								
0.75_																								
0.50_																								
0.25_																								
0.00																								
-0.25_																								
-0.50_																								
-0.75_																								
-1.00_																								
-1.25_																								
-1.50_																								
-1.75_																								
-2.00_																								
-2.25																								
-2.50																								
	3456	3458	3460	3462	3464	3466	3468	3470	3472	3474	3476	3478	3480	3482	3484	3486	3488	3490	3492	3494	3496	3498	3500	3502
		NT-02543	0.000	NY CONSIGNO	0101010101					N.72/8/2018	6019659				2037.02						NUM			
	₫i	=	•	-	1	•	6	6	~		\$		0	S				_	61°F M	lostly clo	oudy ^	📮 (a.	(小)) 3: (小)) 7/2	13 PM 6/202

Cu(bp)₂(ClO₄)₂. A Rhombically Symmetric g-Factor

WIN	NEPR SimF	onia - [S	im1]																				_	
🔣 File	Paramet	ter Oper	ration Pro	ocessing	View Op	otions W	indow Ir	nfo																
DA	- 85	x	⊽ □ Sc	olution 🔻	, IH	5 <u>BUN</u>																		
[*10 [^] 3]																								
2.50_																								
2.25_																								
2.00																								
1.75_																								
1.50_																								
1.25_																								
1.00_																								
0.75_																								
0.50_																								
0.25_																								
0.00_																								
-0.25_																								
-0.50_																								
-0.75_																								
-1.00_																								
-1.25_																								
-1.50_																								
-1.75_																								
-2.00_																								
-2.25																								
-2.50_																								
	3456	3458	3460	3462	3464	3466	3468	3470	3472	3474	3476	3478	3480	3482	3484	3486	3488	3490	3492	3494	3496	3498	3500	3502
				~																	NUM			12 014
	Цi	_	•		1	•	6	\bigcirc	~		\$	r 🔳	0			<mark>.</mark>		<u>_</u>	63°F N	Mostly su	inny 🔨	· 🖵 (r.	口 ⁽³⁾⁾ 7/3	42 PM 26/202

Cu(bp)₂(ClO₄)₂. A Rhombically Symmetric g-Factor

WINEPR SimF	onia - [Cu(bp)2Cl(C	104)2.par]																- F	23
File Parame	ter Operation P	rocessing View O	THS															- 4	5 ×
+ - * /	Factor	 1.56000 	/10 10^-2 *1																
[*10^ 3]	1																		
12_ - 10_ - 8_ - 6_ - 4_ - 2_																			
0 -2 -4 -6 -8 -10 -12 -14																			
2000	2100	2200	2300 2400	2500	2600	2700	2800	2900	3000	3100	3200	3300	3400	3500	3600	3700	3800 NUM	3900	[G]

1

Copper sulfate in frozen water/glycerol

WIN	NEPR SimF	onia - [S	im8]																				_	þ
🔐 File	e Parame	ter Oper	ation Pro	ocessing	View Op	ptions W	indow Ir	nfo																
DA		≎ X ≏	⊽	olution 🗖	, IH	5 RUN 💿																		
[*10 [^] 3]																								
2.50_																								
2.25_																								
2.00_																								
1.75																								
1.50																								
1 25																								
1.00																								
1.00_																								
0.75_																								
0.50_																								
0.25_																								
0.00																								
-0.25_																								
-0.50																								
0.30																								
-0.73_																								
-1.00_																								
-1.25_																								
-1.50_																								
-1.75																								
-2.00_																								
-2.25																								
2.20_																								
-2.50_																								
	3456	3458	3460	3462	3464	3466	3468	3470	3472	3474	3476	3478	3480	3482	3484	3486	3488	3490	3492	3494	3496	3498	3500	3502
	ر ب					-					_							_			MUM		4	:41 PM
	- Ei				_ 10		\odot	~		\$		C	S		۲	2			60°F	Partly su	inny ^	Ų (r.	다») 7/3	26/202

Copper sulfate in frozen water/glycerol

VO-TPP

A complex compound of Vanadyl ion (VO²⁺) with TPP (5,10,15,20-Tetraphenyl-21*H*,23*H*-porphine)

The spectrum is dominated by the hyperfine splitting and the g-factor is nearly isotropic. Not quite, though! Vanadium has a nuclear spin of 7/2 yielding eight hyperfine lines.

Finding initial values for the hyperfine splitting

The High Field Approximation, B_0 >>HFS, evidently does not work:

- Using the 2nd order is necessary

- The initial hyperfine splitting values for the simulation still can be estimated as 1/7 of the corresponding $7A_{\perp}$ and $7A_{\parallel}$ distances.

Find the initial g-values

| |

WINEPR Si	mFonia - [S	im12]																						\times
👫 File Parar	neter Oper	ation Pro	ocessing	View Op	tions W	/indow I	Info																-	e x
0 & 2 8 5	\$ X ≏	⊽□ So	olution 🔻	IH	5 <u>Run</u> 💿																			
[*10 [^] 3]																								
2.50_																								
2.25_																								
2.00_																								
- 1.75_																								
1.50_																								
1.25_																								
1.00_																								
0.75_																								
0.50_																								
0.25_																								
0.00_																								
-0.25_																								
-0.50_																								
-0.75_																								
-1.00_																								
-1.25_																								
-1.50_																								
-1.75_																								
-2.00_																								
-2.25_																								
-2.50_																								
3456	3458	3460	3462	3464	3466	3468	3470	3472	3474	3476	3478	3480	3482	3484	3486	3488	3490	3492	3494	3496	3498	3500	3502	[G]
																				NUM	3504.9	7 G		

w

🚍 🥶 😼

⊟i

🔥 👘

 \bigcirc

錂

L

S

● 57°F へ 및 <u> </u>4୬) 9:20 PM 7/26/2022

VO-TPP

WINEPR SimFonia - [VO-TPP.par]		
🔀 File Parameter Operation Processing View Options Window Info		_ 8 ×
+ - * / Factor • 1.47000 /0 10^2 *10 4		
[*10*3]		
6_		
-6_		
-8_		
-12_		
2900 2950 3000 3050 3150 3200 3250 3300 3350 3400 3450 3550 3560 3550 3500 3555 3700 3756 3800 3850 3900	3950 4000	4050 4100 IGI

Any questions? Thank you!

Innovation with Integrity