Ultra-High Magnetic Fields
for new scientific findings
For many years, high-resolution NMR was limited to a magnetic field of 23.5 Tesla, equivalent to a proton resonance frequency of 1.0 GHz. This limit was set by the physical properties of metallic, low-temperature superconductors (LTS), and it was first reached in 2009 with an Avance® 1000 spectrometer at the Ultra-High Field NMR Center in Lyon, France.
High-temperature superconductors (HTS), first discovered in the 1980s, opened the door towards even higher magnetic fields at low temperatures, but considerable challenges in YBCO HTS tape manufacturing and in superconducting magnet technology made further UHF progress daunting until recently.
Bruker's unique 1.1 and 1.2 GHz NMR magnets utilize a novel hybrid design with advanced high-temperature superconductor (HTS) in the inner sections and low-temperature superconductor (LTS) in the outer sections of the magnet. The Ascend 1.1 and 1.2 GHz are stable, standard-bore (54 mm) magnets with exquisite homogeneity and field stability compatible with the demanding requirements of high-resolution NMR. The 1.2 GHz spectrometers are available with different ultra-high field probes, including CryoProbes for solution-state NMR to fast-spinning MAS solid-state NMR probes.
In 2019, Bruker successfully installed the world's first 1.1 GHz NMR system at St. Jude's Children Research Hospital in Memphis, Tennessee.
Dr. Charalampos Kalodimos, Chair of the Structural Biology Department at St. Jude's Children Research Hospital stated: "We are thrilled to have received the first 1.1 GHz NMR spectrometer, which will be our most important tool to perform research in the area of dynamic molecular machines such as molecular chaperones and protein kinases. We commend Bruker on this impressive technological achievement."
Shortly after, in early 2020, Bruker installed the world's first 1.2 GHz NMR system at the CERM of the University of Florence. CERM is an Italian center of the European research infrastructure in structural biology.
Following the successful installation, professors Lucia Banci and Claudio Luchinat at the CERM of University of Florence, stated: “We are thrilled to have the world’s first 1.2 GHz NMR spectrometer successfully installed in our lab. We are looking forward to putting the instrument to use in our research on the structures and function of proteins linked to neurodegenerative diseases, such as Alzheimer's and Parkinson's Diseases, as well as in cancer and viral protein structure and functional research. Right now, we are actively working on SARS-CoV-2 proteins, and we will soon record the first 1.2 GHz NMR spectra of a protein from this coronavirus!”
Later in 2020, Bruker successfully installed the world’s second 1.2 GHz NMR spectrometer at Eidgenössische Technische Hochschule (ETH) Zürich in Switzerland. This 1.2 GHz spectrometer is the first one that is configured for solid-state NMR.
At the time, Professors Beat Meier, Matthias Ernst and Alexander Barnes at ETH stated: "We are very excited to have the world's first 1.2 GHz solid-state NMR spectrometer successfully installed in our lab. The system was delivered just a couple of months ago and the installation and energizing of the NMR magnet went exceptionally well. The completion of the installation marks the culmination of a project that we started with Bruker almost a decade ago. We are very much looking forward to starting our first ultra-high field solid-state NMR experiments.“
ETH utilize their 1.2 GHz NMR system to enable the development of new solid-state NMR techniques, and to apply these techniques to study materials and biological systems, including proteins fibrils which are linked to diseases such as Parkinson's and Alzheimer's. The 1.2 GHz spectrometer will also be used as a basis for further improving NMR methodology towards in-cell structural biology, and to investigate solid catalysts and functional materials, e. g. for energy conversion and data storage.