Nondestructive characterization of advanced polymeric materials using spectroscopy and atomic force microscopy

Atomic Force Microscopy
Bede Pittenger, Ph. D., Bruker Nano, Santa Barbara, CA

Atomic Force Microscopy
3D Optical Microscopy
Fluorescence Microscopy
Tribology
Stylus Profilometry
Nanoindentation

Innovation with Integrity
Sample Courtesy: Dr. Jamie Hobbs University of Sheffield
During Growth

PHB/V poly(hydroxybutyrate-co-valerate) crystal growth from amorphous phase after quenching. 20x20um scan (26MPixels) in TappingMode

After Growth

Sample Courtesy: Dr. Jamie Hobbs University of Sheffield
Spherulite growth rates are consistent with earlier measurements.

Front growth rate ~ const for each temperature.

Secondary Nucleation model ignores variations in growth rate of individual lamellae.

Rate of nucleation (T) affects spherulite structure.

![Graph showing spherulite growth rate vs. temperature](image)
Tapping Mode phase contrast inversion prevents consistent interpretation

Phase contrast depends on AFM configuration:
- Low tapping force, phase contrast due to adhesion
- At higher tapping forces, the elasticity may dominate
PeakForce QNM calculates sample properties directly from force curves

- Complete force-distance relation between tip and sample is analyzed in real-time, allowing:
 - Feedback based on the peak force, protecting the tip and sample
 - Mechanical properties mapped simultaneously with topography
 - Individual curves can be examined and re-analyzed offline
 - Off-resonance: allows combination with other techniques

\[F - F_{adh} = \frac{4}{3} E^* \sqrt{R(d - d_0)^3} \]
Rapid growth of PeakForce Tapping publications

- Wide range of research areas
- ~75% are using PeakForce QNM for unique information it provides
- February 2015 update: Current count is >650 publications (Google Scholar returns >900!)
- Papers are overrepresented in ‘high impact’ journals
PeakForce QNM for high resolution imaging: Topography & Adhesion

“Green Chemistry Approach to Surface Decoration: Trimesic Acid Self-Assembly on HOPG”

- Molecular resolution with PF-QNM to complement STM results
 - Periodicity ~1.6nm
 - Adhesion map provides resolution similar to PFT topography
- PFT is able to characterize multilayers, STM not
- PFT more gentle than STM
 - Network disruption in images taken at 5 min intervals with STM
 - No disruption from PFT over 48 hours

PeakForce QNM for high resolution stiffness mapping

“Commensurate–incommensurate transition in graphene on hexagonal boron nitride”

- No signal in Contact or Tapping Mode
- Signal in Modulus and Friction as predicted, but not in Adhesion
- Periodicity depends on rotation of lattices, as does the width of the domain walls in the modulus signal
- Within the domains, graphene deforms to match the BN lattice

• Modulus was found to be linearly related to PVC mass fraction (\&T_g) in homogeneous blends, allowing interface composition to be inferred with resolution \sim 10\text{nm}

• Investigation of PnBMA/PVC interface interdiffusion after annealing (110\text{C}) for different durations
 • Diffusion length \sim \sqrt{t} with mutual diffusion coeff of 0.31\text{nm}^2/s
 • Step in composition appears in interface after 16hours

Applying Time-Temperature Superposition to Analyze Force Maps Across Frequency

“Nano-Palpation AFM and Its Quantitative Mechanical Property Mapping.”

- Long term goal: standardization of AFM modulus measurements for ISO standard (SBR/IR blend)
- Apparent modulus expected to be influenced by time dependent deformation and adhesion
- Comparison of JKR and DMT model analysis shows JKR better for these samples (DMT off by ~25%)
- TTS analysis based on WLF equation has good agreement with bulk measurements of storage modulus for PF-QNM at 250-1000Hz

The Challenge with Conductive Measurements on Soft samples

Severe limitation

- Electrical & mechanical property mapping based on contact mode
- Severe damage/contamination on polymer samples
- Compromised and low resolution measurements

“Perhaps one of the most significant practical challenges to using CAFM is obtaining a good electrical image without causing significant damage to the sample. Patience and a willingness to sacrifice many AFM cantilevers in the name of science, are often necessary.”

Combine Conductivity Measurement With PeakForce Tapping Force Control!

- Tip oscillates at 1kHz. Contact time is typically 20 – 200 µs
- Measure both current during contact time & peak current
- Requires very fast Conductive AFM electronics:
 - 20kHz bandwidth, <100fA noise
 - Range <100fA to >100nA
PeakForce TUNA for quantitative property measurement of V:Ti/SEO nanocomposite

“Quantitative Nanoelectric and Nanomechanical Properties of Nanostructured Hybrid Composites by PeakForce TUNA.”

• “[PF-TUNA] allows one to simultaneously map the topography, modulus, adhesion, and conductivity of advanced materials on delicate samples that cannot be imaged with conventional conductive AFM.”

• Current correlated to positions of individual particles in topography

• High adhesion and low current are observed at the nano particle boundaries rich in PS phase

PF-TUNA for high-resolution mapping of current on polymer-nanotube composites

“Nanoscale investigation of the electrical properties in semiconductor polymer-carbon nanotube hybrid materials.”

- Topographic imaging can confirm that the CNTs are dispersed and the P3HT fibers grow perpendicular to the CNT
- High-res PF-TUNA current map impossible in Contact Mode
 - Indicates current is controlled by the spreading resistance
- Negligible lateral forces and normal force ~50pN make it possible to map current distribution over individual nanofibers

KPFM-Kelvin Probe Force Microscopy

KPFM measures the work function difference of tip/sample.

<table>
<thead>
<tr>
<th>AM</th>
<th>Amplitude-Modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FM</td>
<td>Frequency-Modulation</td>
</tr>
<tr>
<td>✓ Better spatial resolution</td>
<td></td>
</tr>
<tr>
<td>✓ Better accuracy</td>
<td></td>
</tr>
</tbody>
</table>

Combine with PF-QNM:
- Improved sensitivity
- Mechanical property mapping

Physical Review B 2005, 71(12) 125424
PF-KPFM for quantitative characterization of work function

“Remove the Residual Additives toward Enhanced Efficiency with Higher Reproducibility in Polymer Solar Cells.”

PF-KPFM surface potential images

- **Pure polymer**
- **Device A**
- **Device B**
- **Device C**

- PF-KPFM shows that the methanol wash (Device C) increased the work function difference.
- This reduced the electron injection barrier, leading to better device performance.

PeakForce KPFM for correlated property mapping

“Giant switchable photovoltaic effect in organometal trihalide perovskite devices”

- Switchable photocurrent 10000x larger than on other ferroelectric photovoltaics!
- PeakForce KPFM was used to correlate topography, Potential and Adhesion
 - Ruled out topographic influence on work function
 - Confirmed presence of a different material
- Variation in work function and adhesion is thought to be due to ion motion during poling

Summary: AFM with PeakForce Tapping

Empowering Polymer Researchers with Nanoscale Information

- Atomic Force Microscopy excels at investigating surfaces and interfaces.
- PeakForce Tapping improves on previous AFM modes, providing precise force control for routine high-resolution imaging.
- PeakForce QNM, TUNA, and KPFM enable quantitative property maps to be captured along with topography, providing new insight into nanoscale sample behavior.
- Adoption of PeakForce Tapping technology has seen rapid growth in many research areas as demonstrated by the ever increasing number of high impact publications since its release.