Rapid analysis of nutrients and toxic elements in food and beverages by TXRF

Bruker Nano Analytics, Berlin
Webinar, December 8th, 2016

Innovation with Integrity
Welcome

Speakers

Dr. Hagen Stosnach
Applications Scientist TXRF
Berlin, Germany

Dr. Armin Gross
Global Product Manager TXRF
Berlin, Germany
Itinerary

- Next Generation TXRF concept
- Application examples
 - Arsenic in rice
 - Lead in tea drinks
 - Nutrient elements in vitamin pills
 - Toxic metals in glucose
- Comparison with Atomic Spectroscopy
- Summary and outlook
Next Generation TXRF Concept
Functional principle of total reflection X-ray fluorescence (TXRF) spectroscopy

Total reflection X-Ray Fluorescence spectroscopy

- Samples must be prepared on a reflective media
- Suitable for liquids, solids, suspensions, films etc.
- Detection limits down to 0.1 ppb
Next Gen TXRF
Excitation and Detection Module
Next Gen TXRF
Excitation and Detection Module

2 Tubes
Mo, W, Cu, Cr, Ag

Detector
60 / 100 mm²

3 Monochromator

Sample Station
Next Gen TXRF
Samples and Sample Changer

Autosampler

- Horizontal sample orientation
- 90 quartz discs (30 mm)
- 2” wafer
- Microscopy slides
- Rectangular samples max. 54 mm
Next Gen TXRF
Samples and Sample Changer

Autosampler

- 6 internal instrument quality standards
Next Gen TXRF
Samples and Sample Changer

Automatic tray recognition

- Recognizes different tray types (disc / wafer / ...)
- "Ownership" for trays
- Automatic loading and starting of measurement jobs possible

LED light provides status information

- Tray identified, no job
- Tray and job identified
- Job running
- Job finished
Next Gen TXRF
Qualified for Routine Analysis

Satisfying requirements in service, research and industrial laboratories

- Provide better system stability over extended period of time
 - Monitor key parameters (Temp, humidity)
 - Implement temperature regulation

- Better data quality
 - automatic alignment and automated procedures (gain correction, tube & detector stability)
 - minimize sample contamination – optimized airflow

- Multi-user operation
 - Large sample holding capacity (90 samples) use of the night-shift
 - Sample loading/unloading during operation
 - User manager to allow multiple users to schedule their measurements
Arsenic in rice - Background
Source of As contamination
- Anthropogenic (mining activities, industrial air pollution)
- Natural/geological (especially in Bangladesh)

Overview limit values
- Proposal Codex Alimentarius (WHO, 2012):
 - 200 µg/kg inorganic As (polished rice)
 - 300 µg/kg inorganic As (raw rice)
- China: Limit value of 200 µg/kg inorganic As (As(III) + As (V))
- European Union: Limit values for As in rice proposed:
 - 200 µg/kg inorganic As (polished rice)
 - 100 µg/kg inorganic As (baby food)
Introduction/Background

Common analytical techniques for As in rice

- Atomic adsorption spectroscopy (AAS)
- Inductively-coupled plasma optical emission spectroscopy (ICP-OES)
- Inductively-coupled plasma mass spectroscopy (ICP-MS)

Advantages of these techniques

- Very low detection limits (down into the low ppb-range)
- Separate analysis of inorganic and organic As-compounds (ICP-MS)

Disadvantages of these techniques

- Laborious sample preparation (acid digestion)
- High demand on analytical staff
- High demand on laboratory infrastructure (Ar gas, cooling water, exhausts)
TXRF project „Arsenic in rice“

Cooperation partner

- Queens University Belfast, Institute for Global Food Safety

Work package 1

- Select rice sample examples from worldwide sources varying As concentrations
- Analyze, compare and evaluate TXRF measurements with existing data from ED-XRF and ICP-MS
- Include baby food and rice products compare different cooking methods

Work Package 2

- Development of an As speciation method rice extraction and selective binding of inorganic As
Arsenic in rice - Measurements
Arsenic in rice
Sample preparation

Samples

Reference standard:
- NIST1568a “Rice flour”

Real samples (obtained at a local supermarket)
- Parboiled rice
- Long grain rice
- Risotto rice
- Round grain rice
- Basmati rice
Arsenic in rice
Sample preparation

- Pregrinding in mortar
- Grinding in ball mill (Retsch MM400, 30 Hz/3 min, Zr vessel)
- Weighing of 100 mg
- Suspending in 5 ml Triton X-100 (1 Vol.-%)
- Internal standardization (10 mg/kg Y)
- 10 µl on quartz glass carriers (samples 3x, CRM 10x)
Arsenic in rice
Measurements

Measurement parameter
S4 T•STAR, S2 PICOFOX 800
- X-ray tube with Mo anode
- 50 kV/1000µA
- 60 mm² SDD
- Measurement time: 1000s
Arsenic in rice

Results

- Typical spectrum of NIST 1568a rice standard
- Detail view of the high energy range above 8 keV
Arsenic in rice

Results

- TXRF (blue) and ICP (grey) values are in good concordance
- New legal limits are 200 µg/kg (China, EU; yellow line)
- Detection limits are about 50 µg/kg (red line)
Arsenic in rice
Summary and Outlook

TXRF is suitable for the detection of As in rice

- Recent developments provide adequate detection limits for the analysis of As in rice
- A standard method to be used in labs with low-level infrastructure is in preparation

Ongoing technical improvements

- Optimize homogenization procedure
- Further increase of detector size
Lead in tea drinks
Lead in tea drinks

Background

Analytical task
• Analysis of lead in tea drink samples with regard to the legal limit of 50 µg/l

Test sample
• Lemon ice tea drink, commercially obtained at a supermarket
• Sample is labelled to contain sugar with a concentration of 7 g/100 ml
Lead in tea drinks
Samples and sample preparation

Sample preparation

- Blank sample
- Spiked sample 10 µg/l Pb
- Spiked sample 50 µg/l Pb
- Spiked sample 200 µg/l Pb

Addition of 500 µg/l Ga internal standard

Homogenization

Pipetting of 10 µl sample on carrier

Drying on hot plate at 40 °C

3x preparation on quartz glass carriers
 - Blank sample
 - Spike sample 10 µg/l Pb
 - Spike sample 200 µg/l Pb

7x preparation on quartz glass carriers
 - Spike sample 50 µg/l Pb

3x preparation on acrylic glass carriers
 - Spike sample 50 µg/l Pb
Lead in tea drinks
Measurements

Instrumentation
- S2 PICOFOX 800
- 50 W Mo-tube (50 kV/1000 µA)
- 60 mm² SDD

Measurement time
- 1200 s

Blank
Spike 10 µg/l
Spike 50 µg/l quartz discs
Spike 50 µg/l acrylic discs
Spike 200 µg/l
Lead in tea drinks

Results

<table>
<thead>
<tr>
<th>Sample</th>
<th>Nominal concentration (µg/l)</th>
<th>TXRF values (µg/l)</th>
<th>Concentration</th>
<th>Standard deviation</th>
<th>Detection limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>~ 0</td>
<td></td>
<td>7,4</td>
<td>2,3</td>
<td>3,9</td>
</tr>
<tr>
<td>Spike 10 µg/l</td>
<td>10</td>
<td></td>
<td>6,2</td>
<td>2,3</td>
<td>3,6</td>
</tr>
<tr>
<td>Spike 50 µg/l quartz discs</td>
<td>50</td>
<td></td>
<td>48</td>
<td>2,1</td>
<td>2,4</td>
</tr>
<tr>
<td>Spike 50 µg/l acrylic discs</td>
<td>50</td>
<td></td>
<td>51</td>
<td>1,6</td>
<td>2,6</td>
</tr>
<tr>
<td>Spike 200 µg/l</td>
<td>200</td>
<td></td>
<td>193</td>
<td>3,9</td>
<td>2,4</td>
</tr>
</tbody>
</table>
Lead in tea drinks
Method detection limit

Detection limits
- MDL Pb: 6.4 µg/l
- LOQ Pb: 20.5 µg/l
- Recovery: 96.8% (50 µg/l Pb)
Lead in tea drinks

Summary

• The safe analysis of tea drinks regarding a limit value of 50 µg/l Pb is possible

• Sample preparation for TXRF is extremely simple, no digestion required

• TXRF does not require daily calibration

• Numerous other elements like Cu, As and Hg can be determined simultaneously
Nutrient elements in vitamin pills
Nutrient elements in vitamin pills

Samples

- Three different vitamin pills from local drugstores
- Analysis of nutrient elements and comparison with nominal concentrations
- 8 Elements
 Mg, P, Ca, Cr, Zn, Se, Mo, I

Sample preparation

- About 100 mg suspended or dissolved in 5 ml 1% Triton X-100
- Addition of 10 µl Y standard (1g/l)
- Homogenization
- 10 µl pipetted on quartz carrier, dried in vacuum
Nutrient elements in vitamin pills

Measurement parameter

S4 T•STAR

- Dual X-ray tube configuration Mo (17.5 keV) and W-Brems (35 keV) excitation
- 50 kV/1000μA
- 60 mm² SDD
- Measurement time: 1000s
Nutrient elements in vitamin pills

Results

- Accurate quantification of nutrients in % / high ppm range possible
- Actual concentrations are significantly different from nominal values
- Risk of overdose to be considered
Nutrient elements in vitamin pills

- Mo excitation allows highly sensitive detection on Cr and Se
- W-Brems excitation suitable for quantification of Mo and I
Nutrient elements in vitamin pills

Detection limits

- One digit ppb limits for most metals
- Improved performance for light elements
- Sub-ppm detection of I puts TXRF ahead of ICP-OES
Toxic metals in glucose
Toxic metals in glucose S4 TStar configuration

Catalyst analysis applying different excitation energies

- Issue of line overlaps when applying Mo X-ray tube
- Spectrometer S4 T•STAR equipped with Mo and W X-ray tube
- 3 excitation energies
 - Mo-K, 17.5 keV
 - W Bremsstrahlung, 35 keV
 - W-L, 8.4 keV
Toxic metals in glucose
S4 TStar

Samples

- Glucose at different concentrations (0.1%, 0.5%, 1%, 5%)
- Spike with 2 ppm metal concentration (Cr, As, Pd, Cd, Sb)
Toxic metals in glucose
S4 TStar W-Brems excitation

Spectrum W-Brems excitation

• Well separated peaks of Pd, Cd, Sb
Toxic metals in glucose
S4 TStar W-Brems excitation

Results

- Count rates of W-Brems excitation below Mo excitation (40% for Pd)
- LOQ typically in the sub-ppm range
- Dilution of high matrix samples strictly recommended
- More uniform sample layer
- Improved reproducibility
Toxic metals in glucose
S4 TStar Mo excitation

Outstanding performance

- Low ppb quantification limits for As and Cr
- Similar performance for V, Co, Se, Pt etc. (not shown)
Light elements

- W-L excitation for quantification of light elements (Na to V)
- Improvement by a factor of 3 or more
- LOQ for Cr down to 3 ppb
- Quantification of Na, Mg, Al to be tested soon
Comparison with Atomic Spectroscopy
AAS, ICP-MS, ICP-OES
Competition
ICP

<table>
<thead>
<tr>
<th>Feature</th>
<th>ICP</th>
<th>S4 T-STAR</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection limits</td>
<td>sub-ppt (MS) sub-ppb (OES)</td>
<td>sub-ppb</td>
<td>MS with outstanding performance</td>
</tr>
<tr>
<td>Element range</td>
<td>(Li to F) Na to U</td>
<td>Na to U</td>
<td>still significantly higher LOD for some elements</td>
</tr>
<tr>
<td>Sample types</td>
<td>liquid only</td>
<td>Liquids, solids, suspensions, wafers, films, slides</td>
<td>outstanding flexibility of TXRF</td>
</tr>
<tr>
<td>Process time</td>
<td>daily calibration, >1 h for sample prep, fast measurements</td>
<td>No calibration, fast sample prep, long measurements</td>
<td>Fast in case of unknown samples; slow in routine analysis</td>
</tr>
<tr>
<td>Operating costs/a</td>
<td>$12k – $20k</td>
<td>< $5k</td>
<td></td>
</tr>
<tr>
<td>Other features</td>
<td>ICP-OES: no ICP-MS: LC coupling, laser ablation</td>
<td>depth profiling, material analysis, pot. non-destructive</td>
<td>TXRF adds features, perfect fit to any ICP</td>
</tr>
</tbody>
</table>
Cost comparison
TXRF versus ICP-MS

<table>
<thead>
<tr>
<th>Installation</th>
<th>S4 T-STAR</th>
<th>ICP-MS</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument price</td>
<td>123,500 €</td>
<td>130,000 €</td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td>4,500 €</td>
<td>5,000 €</td>
<td></td>
</tr>
<tr>
<td>Training</td>
<td>4,900 €</td>
<td>9,000 €</td>
<td>2 days onsite + courses for 2 users</td>
</tr>
<tr>
<td>Gas supplies</td>
<td>0 €</td>
<td>8,000 €</td>
<td>Argon, He, H₂</td>
</tr>
<tr>
<td>Electrical supplies</td>
<td>0 €</td>
<td>600 €</td>
<td></td>
</tr>
<tr>
<td>Exhaust</td>
<td>0 €</td>
<td>3,500 €</td>
<td>if exhaust system already exists in building</td>
</tr>
<tr>
<td>Peripheral devices</td>
<td></td>
<td>28,000 €</td>
<td>microwave</td>
</tr>
<tr>
<td>Sum</td>
<td>132,900 €</td>
<td>184,100 €</td>
<td></td>
</tr>
</tbody>
</table>
Cost comparison
TXRF versus ICP-MS

<table>
<thead>
<tr>
<th>Operation / year</th>
<th>S4 T-STAR</th>
<th>ICP-MS</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service contract (std)*</td>
<td>9.483 €</td>
<td>10.000 €</td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td>0 €</td>
<td>7.000 €</td>
<td></td>
</tr>
<tr>
<td>Standards</td>
<td>100 €</td>
<td>4.000 €</td>
<td></td>
</tr>
<tr>
<td>Electrical power</td>
<td>200 €</td>
<td>2.000 €</td>
<td></td>
</tr>
<tr>
<td>Spare parts</td>
<td>1.965 €</td>
<td>3.300 €</td>
<td>TXRF: X-ray tube, carriers ICP: detector, torch, cones, injector</td>
</tr>
<tr>
<td>Sum</td>
<td>11.748 €</td>
<td>26.300 €</td>
<td></td>
</tr>
</tbody>
</table>

*) Bruker standard care contract incl. 1 preventive maintenance per year
Cost comparison

TXRF versus ICP-MS

<table>
<thead>
<tr>
<th>Total (5 years)</th>
<th>S4 T-STAR</th>
<th>ICP-MS</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td>132.900 €</td>
<td>184.100 €</td>
<td></td>
</tr>
<tr>
<td>Operation costs</td>
<td>58.740 €</td>
<td>131.500 €</td>
<td></td>
</tr>
<tr>
<td>Man hours</td>
<td>120.000 €</td>
<td>185.000 €</td>
<td>100 k€/a, 220 working days, 50 samples/d</td>
</tr>
<tr>
<td>Total</td>
<td>311.640 €</td>
<td>500.600 €</td>
<td></td>
</tr>
<tr>
<td>Costs / sample</td>
<td>5.67 €</td>
<td>9.10 €</td>
<td></td>
</tr>
</tbody>
</table>

Sources:
- Automotive study 2015
- EPA study 2007
- ICP-OES cost calculator
- Discussion forums
- Bruker data
Summary and outlook

- TXRF is a powerful tool for the accurate quantification of nutrient and toxic elements in food and beverages
- LOD values are typically in the low ppb range for certain metals
- In addition the detection of light elements like Mg or P and critical compounds like I and other halogenides is possible
Q & A

Any Questions?

Please **type in** the questions you may have for our speakers in the **Questions Box** and click **Submit**.
Thank you for your attention!

www.bruker.com / www.s4tstar.com