[1] C. Ran, X. Xu, S. B. Raymond, B. J. Ferrara, K. Neal, B. J. Bacskai, Z. Medarova, and A. Moore
(2009) Design, synthesis, and testing of difluoroboron-derivatized curcumins as near-infrared
probes for in vivo detection of amyloid-beta deposits. J. Am. Chem. Soc. 131, 15257–15261.
[2] W. Pham, B.-Q. Zhao, E. H. Lo, Z. Medarova, B. Rosen, and A. Moore(2005) Crossing the
blood-brain barrier: a potential application of myristoylated polyarginine for in vivo neuroimaging.
NeuroImage 28, 287–292.
[3] W. M. Pardridge (2005) The Blood-Brain Barrier: Bottleneck in Brain Drug Development.
NeuroRx. 2, 3–14.
[4] Q. Meng, M. Yu, B. Gu, J. Li, Y. Liu, C. Zhan, C. Xie, J. Zhou, and W. Lu(2010)Myristic acidconjugated
polyethylenimine for brain-targeting delivery: in vivo and ex vivo imaging evaluation.
J. Drug Target. 18, 438–446.
[5] Z. Hao, Y. Cui, M. Li, D. Du, M. Liu, H. Tao, S. Li, F. Cao, Y. Chen, X. Lei, L. Wang, D. Zhu, H.
Peng, and C. Jiang (2013) Liposomes modified with P-aminophenyl-α-D-mannopyranoside:
a carrier for targeting cerebral functional regions in mice. Eur. J. Pharm. Biopharm. Off. J.
Arbeitsgemeinschaft Für Pharm. Verfahrenstechnik EV 84, 505–516.
[6] M. M. Ali, M. P. Bhuiyan, B. Janic, N. R. Varma, T. Mikkelsen, J. R. Ewing, R. A. Knight, M. D.
Pagel, and A. S. Arbab (2012) A nano-sized PARACEST-fluorescence imaging contrast agent
facilitates and validates in vivo CEST MRI detection of glioma. Nanomed. 7, 1827–1837.
[7] Z. Chu, K. LaSance, V. Blanco, C.-H. Kwon, B. Kaur, M. Frederick, S. Thornton, L. Lemen, and
X. Qi(2014) In vivo optical imaging of brain tumors and arthritis using fluorescent SapC-DOPS
nanovesicles. JoVE 87, e51187.

→ Back to the Publication