Academic Geoscience Research

Basins, Stratigraphy and Geochronology

Stratigraphers compile big datasets to solve big problems in the geosciences to explore earth’s history and basin evolution. Bruker’s tools enable reliable and repeatable measurements of geochemistry and mineralogy from hand sample, outcrop, core and cuttings.


New Tools for the Investigation of Stratigraphic Successions and Deep Time

The sedimentary record in basins record the history of earth. The birth, life and death of a mountain chain is recorded in basinal sediments. Sediments record the history of past life, climate, environments and the evolution of the surface of the earth. Bruker’s analytical tools give geologists the power to understand trends, visualize structures and better understand the dynamic processes that have shaped Earth. 


Chemostratigraphy Enables Correlations and Reservoir Characterization with High-resloution Elemental Data

Chemostratigraphy can be a particularly effective investigative tool for successions that are highly weathered or lack distinctive features. For example, red beds are commonly hundreds of meters of stacked similar rocks that easily weather, but distinctive chemical signatures empower detailed correlations.

Chemostratigraphy utilizes chemical relationships in sedimentary rocks to understand stratigraphic relationships. Elemental chemostratigraphy is an accessible method that can be applied to cuttings, core, and outcrops using X-ray fluorescence (XRF). Elemental trends and ratios are an effective tool for correlation, even in thick successions of unconventional shale or red beds where marker beds are elusive. Elements can also be effective paleoenvironment proxies, indicating chemical conditions during deposition. For example, detrital sedimentation rates in predominantly carbonate system can be tracked by the covariance of aluminum (Al), potassium (K), silicon (Si), titanium (Ti), and zirconium (Zr). In mud-rich systems the accumulation of molybdenum (Mo) and uranium (U) can indicate anoxic bottom water conditions. Portable XRF (pXRF) and matrix-matched calibrations make collecting chemical data on rocks easier than ever. Click below to learn more.  


Repeatable and Quantitative Lithostratigraphy with Innovative Mineral Analysis

Lithostratigraphy is the systematic organization of rocks based on their lithological properties. Bruker’s tools for mineral identification enable a type of quantitative lithostratigraphy or lithotyping. Lithotyping is using classification techniques like cluster analysis or deep learning to group large datasets into meaningful lithofacies-like groupings. Those groupings can be used in stratigraphy and basin analysis to: 

  • Improve lithostratigraphy correlations by recognizing diagnostic patterns in lithotype occurrence that may not be obvious through optical observations of core, outcrop, or cuttings. 

  • Conduct high-resolution reconstructions of paleoenvironment by connecting lithotypes to facies or sub-facies, such as tracking underclay-paleosol relationships. 

  • Make regional sequence stratigraphic or predictive stratigraphic frameworks more robust by removing interruptive bias and increasing repeatability of stratigraphic observations from many wells. 

  • Collect lithologic data from cuttings and other hard to describe geologic samples, empowering deep-time studies in locations without core or outcrop.  

  • Create compelling visualizations that enable quick-look assessment of formation breaks, the occurrence of pay in all types of oil and gas wells. 

The main technologies used to generate lithostratigraphy logs are automated mineralogy, X-ray diffraction (XRD) and FTIR spectroscopyAutomated mineralogy generated quantified maps of minerals from thin sections or grain mounts. Mineral textural information and mineral associations can be used to group results into lithotypes and generate lithology logs, and calculated density or rock property logs. X-Ray diffraction (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy can be used to identify minerals and the data can be grouped into lithotypes for logging. 

Image curtsey of Vidence Inc.: An example lithotype log generated from cuttings by Vidence Inc generated using automated mineralogy. Lithologic breaks and key reservoir lithofacies can be clearly identified.

Chronostratigraphy and Geochronology

Tools to Optimize Chronostratigraphy and Geochronology Workflows

Zircons mounted on a glass plate

Chronostratigraphy is concerned with establishing the general ages of stratified rocks. Studies of successions of rocks reveal depositional processes through investigations of chemistry, magnetism, fossils, striatal stacking patterns, and superposition relationships to reveal the temporal correlative relationships and the history of the earth. Geochronology is concerned with establishing the absolute age of any rock unit, and in sedimentary geology understanding the timing of processes such as erosion and deformation. The identification, isolation, and analysis of dateable minerals (e.g. zircon) is a primary tool used in both chronostratigraphy and geochronology. Bruker is innovating methods to streamline this process:

  • The M4 TORNADO micro-XRF geochemical mapping of large samples allows for quick-look assessment of zircon fertility of samples either through geochemical proxies or by direct mineral identification with M4 AMICS

  • AMICS for scanning electron microscopes provides automated mineralogical mapping of thin sections and polished grain mounts to identify and quantify dateable minerals. AMICS can be configured to identify target minerals and collect high-quality long-count spectra for quantification. 

  • Both SEM AMICS and M4 AMICS enables workers to precisely locate the spatial coordinates of dateable minerals on a slide, thin section, or grain mount. Those coordinates can be exported to a LA-ICPMS. This can reduce the total amount of sample processing and concentration needed, including hand picking of grains in mineral separates. 

Weitere Informationen

Zugehörige Produkte

Products for Basins, Stratigraphy, and Geochronology


D8 ADVANCE Familie

Die D8 ADVANCE-Familie ist ein vollständig erweiterbares modulares System, das den analytischen Anforderungen von Pulver-, Bulk- und Dünnschichtproben unter Umgebungs- und Umgebungsbedingungen gerecht wird.


Das neue D8 ENDEAVOR ist ein fortschrittliches Röntgenbeugungssystem (XRD) für Pulveranwendungen in der industriellen Prozessoptimierung und Qualitätskontrolle. Das System kann eigenständig in einer Multi-User-Umgebung verwendet oder für den vollautomatischen Betrieb in eine Laborumgebung integriert werden.


Das weltbeste Tischdiffraktometer. XRD für alle XRD für überall XRD für alles
Kompaktes FT-IR Spektrometer: ALPHA II

Kompaktes FT-IR Spektrometer: ALPHA II

Spezialisiert auf schnelle routinemäßige chemische Analyse mit maximalem Benutzerkomfort und Zuverlässigkeit. Kompakter Formfaktor gepaart mit erstklassiger QC-Leistung.

AMICS Automatisierte Mineralogie für REM

Automatisierte Schnellabtastung zur Mineral- und Gesteinscharakterisierung mittels REM
Raman Spektrometer: BRAVO

Handgehaltenes Raman-Spektrometer: BRAVO

Für die industrielle Rohstoffkontrolle und Identifizierung unbekannter Substanzen.
M4 TORNADO Mikro-RFA Spektrometer


Leistungsstarkes Mikro-RFA Spektrometer für die Probencharakterisierung mit kleinem Messfleck (< 20 µm), Mehrschichtanalyse von Proben mit bis zu 12 Schichten sowie Zusammensetzungs- und Elementverteilungs-Maps (2D Flächenscans).


M4 TORNADO AMICS ist ein innovativer neuer Ansatz zur automatisierten Mineralogie, bei dem Röntgenanregung zur Erfassung von Fluoreszenzspektren für die Mineralerkennung eingesetzt wird.
M4 TORNADO PLUS Mikro-XRF-Spektrometer


Das revolutionäre Super-Leichtelement Mikro-RFA Spektrometer
3D X-ray Microscopes

3D X-ray Microscopes

Bruker’s portfolio of 3D X-ray microscopes (XRM) offers turnkey solutions for non-destructive 3D imaging for a wide variety of industrial and scientific applications.
S2 PUMA Series 2

S2 PUMA Series 2

Multielementanalyse von Kohlenstoff (C) bis Americium (Am) für einen weiten Anwendungsbereich in produktionsnaher Qualitätskontrolle sowie in Zentrallaboren. Mit Hilfe seiner einzigartigen HighSense Detektoren beherrscht der S2 PUMA auch anspruchsvolle Anwendungen in der Forschung und Entwicklung.


Exzellente analytische Leistung für die Elementanalyse mit innovativer Technologie in einer kompakten Größe.
TRACER 5 Portable XRF Spectrometer

TRACER 5 Portable XRF Spectrometer

High value handheld XRF performer for the most demanding analyses: synchronizes power, function, precision, and accuracy for a dynamic, field capable, lab-like experience.