Fluorescence Microscopy Journal Club

Label-Free Imaging for Quality Control of Cardiomyocyte Differentiation

by Tongcheng Qian, Tiffany M. Heaster, Angela R. Houghtaling, Kexin Sun, Kayvan Samimi, and Melissa C. Skala

Nature Communications 12, Article number: 4580 (2021)

DOI: 10.1038/s41467-021-24868-1

Pluripotent stem cells have therapeutic potential in many areas of medicine because of their ability to differentiate into specific cells and tissues needing repair. This process of differentiation is not 100% efficient, which presents challenges when scaling for use in regenerative cell therapy. To improve quality control for stem cell derived tissues in a clinical setting, there is a need to non-invasively monitor and predict differentiation.

In this article, the authors highlight an optical approach using multiphoton excitation from a Bruker Ultima microscope to measure metabolic changes throughout the differentiation of pluripotent stem cells to cardiomyocytes. This technique of Optical Metabolic Imaging takes advantage of the intrinsic fluorescence of metabolites such as NAD(P)H and FAD, including the fluorescence lifetime measurement capabilities of the microscope, to distinguish between metabolic states. In their model, they show that this autofluorescence measurement of metabolism can predict cardiomyocyte differentiation outcome early and reliably.

If you have questions about any of our solutions for multiphoton or fluorescence lifetime imaging or would like expert guidance about the best-fit solutions for your intended intended application, please contact us.


  • Developing and validating a non-invasive, label-free live cell imaging platform for predicting the efficiency of human pluripotent stem cell differentiation into cardiomyocytes



  • Demonstrated that low (< 50%) and high (‚Č• 50%) differentiation efficiency groups can be separated with a high level of accuracy within 1 day after initiating differentiation using live cell autofluorescence


Fluorescence Imaging, Fluorescence Lifetime Imaging (FLIM), Optical Metabolic Imaging, Stem-Cell Biotechnology, Stem-Cell Differentiation