Nanomechanical Testing of Polymers | Bruker


Quantitative Nanomechanical Characterization of Polymers

Achieving an in-depth understanding of the mechanical properties of polymeric materials can be complex due to their diverse chemical compositions and physical structures. A polymer with a specific molecular weight and at a specific temperature can behave as either a liquid or solid, depending on the time scale of the test. Obtaining a comprehensive understanding of this viscoelastic behavior on the molecular level is important for developing polymers with enhanced properties.

The mechanical and tribological properties of polymers depend on several factors beyond just the monomer unit comprising it, such as the stereochemistry of the linkage, crystallinity, and the degree of crosslinking. Polymer blends may also be used to enhance properties beyond what can be obtained through a single polymeric species. Properties of polymer blends highly depend on the degree of dispersion, size of dispersion phases, and interfacial phase interaction between the components of the blend. The ability to quantitatively characterize individual constituents of the morphology and interfacial behavior is required to engineer new polymeric materials with unique properties.

Polymer Viscoelastic Characterization - Dynamic Nanoindentation

Nanoscale dynamic mechanical analysis provides the ability to measure viscoelastic properties at the molecular level, on individual polymer phases, and on polymeric interfaces. nanoDMA is a hybrid nanoindentation testing technique that allows the quantitative measurement of storage modulus, loss modulus, and tan-delta over a broad frequency range. Quantitative dynamic nanoindentation measurements can be performed at a localized test site or in a mapping mode to determine spatially resolved viscoelastic properties of polymers over multiple phases. Combined with temperature control capabilities, time-temperature-superposition studies can be performed on nanoscale volumes of material.

Polymer Creep and Stress Relaxation

Creep and stress relaxation properties are important material parameters to characterize when polymers are subjected to deformation for prolonged periods of time. Nanoindenters operating under tight feedback control algorithms can reliably perform creep and stress relaxation measurements on features within the microstructure of the polymer. Bruker’s proprietary control algorithms assure drift-free, quantitative nanoscale creep and stress relaxation measurements over long time durations.

Polymer Tribology

Polymers generally have low friction coefficients and high corrosion resistance, making them widely used for many tribological applications. The molecular weight, stereochemistry, degree of crosslinking, polymer blend composition, and chemical affinity all play a role in tribological performance. Bruker's Hysitron test equipment provides the ability to quantitatively characterize friction and wear properties on specific microstructures as well as map tribological properties across phases/interfaces.

Application Notes

Standalone Equipment for Polymer Characterization

Hysitron TI 980 TriboIndenter | Bruker

TI 980 TriboIndenter

Bruker's most advanced nanomechanical and nanotribological test instrument, operating at the intersection of maximum performance, flexibility, reliability, sensitivity and speed.

Hysitron TI Premier | Bruker

TI Premier

Versatile nanomechanical and nanotribological test instrument, supporting a broad range of hybrid and correlative characterization techniques.

Hysitron TS 77 Select Nanoindenter | Bruker

TS 77 Select

Dedicated nanomechanical test instruments, providing an essential toolkit of core nanoscale mechanical characterization techniques.

Microscope Instruments for Polymer Characterization

Hysitron PI 85L SEM PicoIndenter | Bruker

PI 85L SEM PicoIndenter

Depth-sensing nanomechanical test instrument that can be interfaced with scanning electron microscopes (SEM).

Hysitron PI 8X SEM PicoIndenter BRUKER

PI 89 SEM PicoIndenter

Bruker’s comprehensive in-situ nanomechanical test instrument for SEM and FIB/SEM, featuring our full suite of techniques.

Hysitron PI 95 TEM PicoIndenter | Bruker

PI 95 TEM PicoIndenter

The first full-fledged depth-sensing indenter capable of direct-observation nanomechanical testing inside a transmission electron microscope (TEM).


Hysitron TS 75 TriboScope | Bruker

TS 75 TriboScope

Quantitative, rigid-probe nanoindentation and nanotribological characterization on your existing AFM.