Banner chemical imaging microplastics

Microplastics Analysis and Characterization

What are Microplastics?

According to definition, polymer particles with a diameter of less than 5 mm are referred to as microplastic (MP) particles. Depending on their origin, they are further subdivided into primary and secondary particles. Since the list of places where microplastics are found in high concentrations gets longer every month, the analysis of microplastic pollution is a challenging but very important task.

Where do microplastics come from?

Microplastic particles can be categorized into primary and secondary particles. Primary MP particles (MPPs) are those which have been specifically produced for industrial use, for instance as peeling particles in cosmetic products. Secondary MPPs are formed by physical, biological and chemical degradation of macroscopic plastic parts and are the main source of micro particles released into the environment. They are mainly formed by the degradation of improperly disposed plastic waste, tire abrasion and washing of synthetic textiles.

Where is microplastic found?

Riverbeds, the arctic ice, natural fertilizers, soils and even drinking water show noticeable amounts of MPPs. During the last decades, microplastics have even found their way into the human food chain. In short, the ubiquity of microplastic particles makes them an enormous challenge to our environment.

How does microplastic affect us?

While the threat to marine life is mostly understood, its full extent cannot be assessed at present. However, uptake by marine organisms and fish leads to contamination of the human food chain by microplastics. As MPPs may contain problematic plasticizers and can also adsorb other organic pollutants, the long-term effects are fairly unpredictable.

How do you find microplastics?

Although millimeter-sized particles are already considered MPPs and can be distinguished with the naked eye, light microscopy should be mentioned first as the most basic technique to detect microplastics. However, this approach does not provide a chemical identification, which is particularly important to investigate the influence and origin of the detected MPPs. FT-IR and Raman spectroscopy offer the possibility to identify unknown polymer particles within minutes and are fully compatible with microscopic techniques.

Analyzing Microplastics in Sea Salt by FT-IR Imaging

Plastic waste beach
Microplastics Beach

How to analyze Microplastics?

Microscopy is a quick and easy way to detect microplastics, however, its effectiveness increases tremendously when combined with infrared or Raman spectroscopy and thus chemical analysis. Infrared (FT-IR) and Raman spectroscopy offer reliable identification of polymers and can be implemented in a microscope. In that regard, Bruker favors a comprehensive approach. MPPs must be found reliably and identified immediately while also reducing the chance for human error. The chart below shows our product portfolio for microplastic analysis.

Microplastic solutions overview

Microplastic Analysis by FT-IR spectroscopy

Infrared (IR) or Fourier-transform infrared (FT-IR) spectroscopy is the most common way to identify microplastics. As the name suggests, infrared radiation interacts with the particle, yielding information by the absorption of certain wavelengths. If you want to know more about IR spectroscopy, look here.

While larger particles can be detected and analyzed by traditional microscopy combined with a standard ATR FT-IR spectrometer, the majority of MPPs will require an FT-IR microscope. FT-IR’s biggest benefit is the exceptional reliability and its straightforward application. It virtually analyzes all polymers, including dark and fluorescent materials. By comparing sample data with reference data libraries unknowns can be identified and false positives minimized.

Microplastic Analysis by Raman spectroscopy

Raman spectroscopy relies on the inelastic scattering of light from a coherent light source (e.g. laser). Raman spectroscopy is not as widespread as IR spectroscopy, mainly because Raman measurements often require expert knowledge. Especially dark or fluorescent polymers are difficult to analyze or require special techniques. However, when it comes to spatial resolution, Raman microscopy clearly has the advantage, since it offers the analysis of MPPs down to the nanometer range.

Best technique for Microplastic analysis

It is virtually impossible to find a definitive answer to this question, because Raman and FT-IR spectroscopy are complementary techniques. From a spectroscopic point of view, this means that a complete data set can only be obtained if both techniques are used together. In practice, however, this is rarely the case.

Both techniques offer clear pros and cons and it is usually the application that decides which technique is preferred. Currently, even researchers are still discussing the best approach. If you have questions about which methods is the most suitable for your application, contact our microplastic experts and together we will find a suitable solution.

Microscopic image cotton fiber
Synthetic fiber analyzed in a sample of sediment from a riverbed.
FT-IR image of a MP loaded aluminiumoxide filter.
FT-IR image of a MP loaded aluminumoxide filter. The larger particle yields a nice spectrum which can be identified in the next step.
FT-IR identified polyamide
Search result of a spectra comparison in a spectral reference library. Particle was clearly identified as polyamide.

Contact us if you want to know more about our instruments and microplastics

FT-IR Analysis of Microplastics

FT-IR microscopy is the most common approach found in microplastic research. The workflow is very simple, and the results offer high precision and reliability. Especially FT-IR imaging by focal-plane arrays is a state-of-the-art solution. If you want to know more about our FT-IR instrument setup look at the LUMOS II and HYPERION websites.

FT-IR Requirements & Sample Preparation

Depending on the sample you can either use transmission (contact free, IR light completely passes MP) or attenuated total reflectance (ATR, needs contact, IR light slightly penetrates MP surface). Measurements in reflection are also possible (contactless, IR light must pass MP twice) but will not be discussed at this point.

Transmission measurements are the standard approach but require special filters that allow IR light to freely pass to the detector. Depending on preference you can choose from Teflon (PTFE) membranes, metal mesh, silicon and aluminum oxide filters, which all have specific advantages and disadvantages. However, aluminum oxide filters are quite popular and thus will be used as an example on our website and in our videos. ATR on the other hand doesn’t need complex sample preparations or special filters. Microplastics can be directly analyzed on standard nitrocellulose filters and even on top of sediments or other complex matrices.

In the case of drinking water or beverage analysis, the liquid is filtered through an appropriate filter material and subsequently analyzed. If your analyzing river or sea water, material like wood, sand or seaweed needs to be removed by density separation. For this, salt solutions of various concentrations are used. The prepared samples should be dried thoroughly before subjected to IR analysis. In some cases, enzymatic digestion and/or treatment with H2O2 prior to sample filtration may be necessary to remove organic and biological contaminants.

FT-IR Mapping and Imaging of Microplastics

The easiest way is to first detect interesting particles with visual methods and then characterize them point by point with chemical mapping. This “point-and-shoot” approach is very feasible but can require a lot of time if manual search is applied. As a result, automated visual identification is a key requirement for an effortless workflow in microplastic analysis by FT-IR mapping. After measurement, clear identification is readily available by infrared spectral reference libraries for all commonly found polymers.

Although an automatic visual detection reduces human error, this method poses the risk of missing smaller particles as their contrast might be low. To eliminate the human factor almost completely, FT-IR imaging is the safer approach. FT-IR or focal-plane array (FPA) imaging is the state-of-the-art solution to microplastic analysis. It is faster and offers a higher spatial resolution compared to single-point mapping analysis.

Usually, imaging analyzes a whole filter loaded with microplastic particles in one session. Since evaluation is carried out by chemical information only, the chance to miss smaller particles, that have low visual contrast, is significantly reduced. Please watch our video to learn more about FT-IR imaging of microplastics.

Best approach to FT-IR analysis of Microplastic Particles

Again, it is hard to find a definitive answer to this question. Researchers such as the pioneering Alfred-Wegener-Institute and Aalborg University are relying on FPA technology. However in some cases, in which lower concentrations of microplastics are characterized, mapping experiments offer higher efficiency.

As experts in vibrational (micro) spectroscopy with a long-standing experience in MP analysis by FT-IR we support you in finding the most fitting solution to your demands in microplastic investigations. Don’t hesitate to contact us if you need more information.

Microplastics Analysis of Sea Salt by FT-IR Mapping

Slider LUMOS II
FT-IR microscope LUMOS II
Click to enlarge
Color coded analysis of the polymer types on an alumina filter.
Click to enlarge
ATR-Spectra of natural cellulose (blue) in comparison to synthetic viscose (red).

Raman Analysis of Microplastics

Raman microscopy can detect the smallest microstructures and particles (>0.5 µm), which is usually a desired feature in microplastic analysis. However, on top of all its good qualities, it does come with certain sample requirements.

Raman Requirements & Sample Preparation

For the analysis of microplastics using Raman, it is important that neither the examined particles nor the used filter material exhibit fluorescence. Additionally, due to unintentional sample heating, Raman is not readily able to analyze black plastics and rubbers. As multiple measurement parameters might need to be adapted depending on individual sample properties, Raman analysis requires more expert knowledge compared to FT-IR.

Other than that, Raman sample preparation is quite similar to that of IR analysis. Drinking water must be filtered through an appropriate filter material (e.g. gold-coated polycarbonate) and unwanted material like wood, sand or seaweed must be removed prior by density separation with salt solutions of various concentrations. If the MP are loaded with organic and biological pollutants (e.g. plasticizers or algae) enzymatic digestion and/or treatment with H2O2 might be necessary before sample filtration.

Raman Measurement and Imaging of Microplastics

The first option would be to visually analyze the sample and look for individual microplastic particles. Contrast enhancement tools (e.g. dark field illumination) help detect MP particles, but using automatic visual analysis is the safer and quicker approach. After localization, the particles are automatically measured and analyzed. The identity of found particles is easily clarified using Raman spectral reference libraries for all commonly found polymers.

However, there is a risk that colorless MPs with low contrast will be overlooked. In cases where human error is to be eliminated, automated Raman imaging is the key to success. Instead of analyzing single MPs on a filter, the whole filter can be scanned with a very narrow measuring grid. This will increase the time needed for the analysis, but afterwards, identification solely relies on the chemical contrast. By this, MPs are reliably quantified and the chance for human error is greatly reduced.

Best approach to Raman analysis of Microplastic Particles

Again, it is hard to find a definitive answer to this question. Mapping as well as imaging are viable approaches for a comprehensive MPP analysis, each offering unique advantages. If time is of the essence, mapping is the more suitable approach.

As experts in vibrational (micro) spectroscopy with a long-standing experience in MPP analysis, we support you in finding the best solution to microplastic analysis. Don’t hesitate to contact us if you need more information.

SENTERRA II ocular open workplace model 4
Raman microscope SENTERRA II

Learn more about Microplastics

Download Application Note "Analysis of Microplastics using FTIR and Raman-Microscopy"
Download Product Note "MP-ID: Automated particle statistics for single point measurements"
Download Product Note "Filtration Set for Microplastic Analysis and Sample Preparation"

Microplastic Analysis References

2019

  • M. Bergmann, S. Mützel, S. Primpke, M. B. Tekman, J. Trachsel, and G. Gerdts,"White and wonderful? Microplastics prevail in snow from the Alps to the Arctic". Sci. Adv., 2019. 5 (8): eaax1157.
  • M. Haave, C. Lorenz, S. Primpke, and G. Gerdts,"Different stories told by small and large microplastics in sediment - first report of microplastic concentrations in an urban recipient in Norway". Mar. Pollut. Bull., 2019. 141: 501-513.
  • C. Lorenz, L. Roscher, M. S. Meyer, L. Hildebrandt, J. Prume, M. G. J. Löder, S. Primpke, and G. Gerdts,"Spatial distribution of microplastics in sediments and surface waters of the southern North Sea". Environ. Pollut., 2019. 252: 1719-1729.

  • S. M. Mintenig, M. G. J. Löder, S. Primpke, and G. Gerdts,"Low numbers of microplastics detected in drinking water from ground water sources". Sci. Total Environ., 2019. 648: 631-635.
  • S. Primpke, P. A. Dias, and G. Gerdts,"Automated identification and quantification of microfibres and microplastics". Anal. Methods, 2019. 11 (16): 2138-2147.
  • S. Primpke, H. Imhof, S. Piehl, C. Lorenz, M. Löder, C. Laforsch, and G. Gerdts,"Environmental Chemistry Microplastic in the Environment". Chem. unserer Zeit, 2017. 51 (6): 402-412.
  • Peeken, S. Primpke, B. Beyer, J. Gutermann, C. Katlein, T. Krumpen, M. Bergmann, L. Hehemann, and G. Gerdts,"Arctic sea ice is an important temporal sink and means of transport for microplastic". Nature Communications, 2018. 9.
  • T. Mani, S. Primpke, C. Lorenz, G. Gerdts, and P. Burkhardt-Holm,"Microplastic Pollution in Benthic Midstream Sediments of the Rhine River". Environ Sci Technol, 2019. 53 (10): 6053-6062.


2017 - 2018

  • S. M. Mintenig, I. Int-Veen, M. G. J. Löder, S. Primpke, and G. Gerdts,"Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging". Water Res., 2017. 108: 365-372.
  • M. G. J. Löder, H. K. Imhof, M. Ladehoff, L. A. Loschel, C. Lorenz, S. Mintenig, S. Piehl, S. Primpke, I. Schrank, C. Laforsch, and G. Gerdts,"Enzymatic Purification of Microplastics in Environmental Samples". Environ. Sci. Technol., 2017. 51 (24): 14283-14292.
  • M. Bergmann, V. Wirzberger, T. Krumpen, C. Lorenz, S. Primpke, M. B. Tekman, and G. Gerdts,"High Quantities of Microplastic in Arctic Deep-Sea Sediments from the HAUSGARTEN Observatory". Environ. Sci. Technol., 2017. 51 (19): 11000-11010.
  • L. Cabernard, L. Roscher, C. Lorenz, G. Gerdts, and S. Primpke, "Comparison of Raman and Fourier Transform Infrared Spectroscopy for the Quantification of Microplastics in the Aquatic Environment". Environ. Sci. Technol., 2018. 52 (22): 13279-13288.
  • S. Primpke, C. Lorenz, R. Rascher-Friesenhausen, and G. Gerdts,"An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis". Anal. Methods, 2017. 9 (9): 1499-1511.
  • S. Primpke, M. Wirth, C. Lorenz, and G. Gerdts,"Reference database design for the automated analysis of microplastic samples based on Fourier transform infrared (FTIR) spectroscopy". Analytical and Bioanalytical Chemistry, 2018. 410 (21): 5131-5141.