timsTOF fleX Bibliography

Introduction

timsTOF fleX Bibliography

The timsTOF fleX is a high performance UHR-OTOF system with integrated dual ESI/MALDI source, exhibiting high speed and robust MALDI Imaging for all imaginable X-Omics analyses. The additional trapped ion mobility feature adds another separation dimension to unravel complex data and make annotations in MALDI Images more reliable through CCS-matching. Since ASMS 2020 we switched to the next level to gain higher sensitivity for a broad range of compounds and equipped the instrument with a second laser allowing for postionization (MALDI-2).

MALDI-2 uses laser based postionization to enhance and enrich the MALDI experiment, providing access to chemical classes typically opaque to MALDI, at unprecedented sensitivity (2-3 orders of magnitude compared to traditional MALDI) Postionization significantly boosts ion yields for many different analytes and reduces the ever-challenging ion suppression effects in MALDI imaging.

The peer-reviewed and in-peer-reviewing communications listed below is a non-exhaustive list from the work initiated on the first timsTOF fleX (MALDI-2) instruments in the field in the years 2019-2021 and many more are to come.

timsTOF fleX

timsTOF fleX

Title Author Publication Link year Application
Detection of small molecule concentration gradients in ocular tissues and humours Boughton, B.A.; Thomas, O. R. B.; Demarais, N. J. et al. Journal of Mass Spectrometry 55(4), 2019, e4460 https://doi.org/10.1002/jms.4460 2019 Biology
Hydroperoxylated vs Dihydroxylated Lipids: Differentiation of Isomeric Cardiolipin Oxidation Products by Multidimensional Separation Techniques Helmer, P.O.; Behrens, A.; Rudt, E. et al. Analytical Chemistry 92(17), 2020, 12010-12016 https://doi.org/10.1021/acs.analchem.0c02605 2020 Biology
In situ isobaric lipid mapping by MALDI–ion mobility separation–mass spectrometry imaging Fu, T.; Oetjen, J.; Chapelle, M. et al. Journal of Mass Spectrometry 55(9), 2020, e4531 https://doi.org/10.1002/jms.4531 2020 Biology
Resolving the Complexity of Spatial Lipidomics Using MALDI TIMS Imaging Mass Spectrometry Djambazova, K. V.; Klein, D. R.; Migas, L. G. et al. Analytical Chemistry 92(19), 2020, 13290-13297 https://doi.org/10.1021/acs.analchem.0c02520 2020 Biology
Spatial Metabolomics of the Human Kidney using MALDI Trapped Ion Mobility Imaging Mass Spectrometry. Neumann, E. K.;Migas, L. G.; Allen, J. L. et al. Analytical Chemistry 92(19), 2020, 13084-13091 https://doi.org/10.1021/acs.analchem.0c02051 2020 Biology
Multiplexed imaging mass spectrometry of the extracellular matrix using serial enzyme digests from formalin-fixed paraffin-embedded tissue sections Clift, C. L.; Drake, R. R.; Mehta, A. et al. Analytical and Bioanalytical Chemistry 413, 2021, 2709-2719 https://doi.org/10.1007/s00216-020-03047-z 2021 Biology
Preserved and variable spatial-chemical changes of lipids across tomato leaves in response to central vein wounding reveals potential origin of linolenic acid in signal transduction cascade. Veličković, D.; Chu, R. K.; Henkel. C. et al. Journal of Plant-Environment Interactions 2(1), 2021, 28-35 https://doi.org/10.1002/pei3.10038 2021 Biology
Complete spatial characterisation of N-glycosylation upon striatal neuroinflammation in the rodent brain. Rebelo, A. L.; Gubinelli, F.; Roost, P. et al. Journal of Neuroinflammation 18, 2021, Article number: 116 https://doi.org/10.1186/s12974-021-02163-6 2021 Biology
Morphometric Cell Classification for Single-Cell MALDI-Mass Spectrometry Imaging Ščupáková,, K.; Dewez, F.; Walch, A. K. et al. Angewandte Chemie International Edition 59(40), 2020, 17447-17450 https://doi.org/10.1002/anie.202007315 2020 Biology - Clinical
Modulating Isoprenoid Biosynthesis Increases Lipooligosaccharides and Restores Acinetobacter baumannii Resistance to Host and Antibiotic Stress Palmer, L. D.; Minor, K. E.; Mettlach, J. A. et al. Cell Reports 32(10), 2020, 108129 https://doi.org/10.1016/j.celrep.2020.108129 2020 Biology - Clinical
Lipidomic profiling of clinical prostate cancer reveals targetable alterations in membrane lipid composition Butler, L. M.; Mah, C. Y.; Machiels, J. et al. Cancer Research, 2020, 3863 https://doi.org/10.1158/0008-5472.CAN-20-3863 2020 Biology - Clinical
Imaging Mass Spectrometry and Lectin Analysis of N-linked Glycans in Carbohydrate Antigen Defined Pancreatic Cancer Tissues McDowell, C. T.; Klamer, Z.; Hall, J. et al. Molecular & Cellular Proteomics 20, 2021, 100012 https://doi.org/10.1074/mcp.RA120.002256 2021 Biology - Clinical
Spatial differentiation of metabolism in prostate cancer tissue by MALDI-TOF MSI Andersen, M. K.; Høiem, T. S.; Claes, B. S. R. et al. Cancer & Metabolism 9, 2021, Article number: 9 https://doi.org/10.1186/s40170-021-00242-z 2021 Biology - Clinical
β‑Cyclodextrin-poly (β-Amino Ester) Nanoparticles Are a Generalizable Strategy for High Loading and Sustained Release of HDAC Inhibitors Chaudhuri, S.; Fowler, M. J.; Baker, C. et al. Applied Materials & Interface 13, 2021, 20960-20973 https://doi.org/10.1021/acsami.0c22587 2021 Biology - Clinical
Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH Dudek, M.; Pfister, D.; Donakonda, S. et al. Nature 592, 2021, 444-449 https://doi.org/10.1038/s41586-021-03233-8 2021 Biology - Clinical
CRL4AMBRA1 is a master regulator of D-type cyclins. Simoneschi, D.; Rona, G.; Zhou, N. et al. Nature 592, 2021, 789-793 https://doi.org/10.1038/s41586-021-03445-y 2021 Biology - Clinical
Absolute Quantification of 2‐Hydroxyglutarate on Tissue by MALDI MSI for Rapid and Precise Identification of IDH Mutations in Human Glioma Lan, C.; Li, H.; Wang, L. et al. International Journal of Cancer, 2021 https://doi.org/10.1002/ijc.33729 2021 Biology - Clinical
High-Performance Molecular Imaging with MALDI Trapped Ion-Mobility Time-of-Flight (timsTOF) Mass Spectrometry Spraggins, J. M.; Djambazova, K. V.; Rivera, E. S. et al. Analytical Chemistry 91(22), 2019, 14552-14560 https://doi.org/10.1021/acs.analchem.9b03612 2019 Chemistry – Basic Research
Automated Chiral Analysis of Amino Acids Based on Chiral Derivatization and Trapped Ion Mobility–Mass Spectrometry Will, J. M.; Behrens, A.; Macke, M. Analytical Chemistry 93(2), 2021, 878-885 https://doi.org/10.1021/acs.analchem.0c03481 2021 Chemistry – Basic Research
Automated Biomarker Candidate Discovery in Imaging Mass Spectrometry Data Through Spatially Localized Shapley Additive Explanations Tideman, L. E. M.; Migas, L. G.; Djambazova, K. V. et al. Analytica Chimica Acta 1177, 2021, 338522 https://doi.org/10.1016/j.aca.2021.338522 2021 Chemistry – Basic Research
MS Imaging‐Guided Microproteomics for Spatial Omics on a Single Instrument Dewez, F.; Oetjen, J.; Henkel, C. et al. Proteomics 20, 2020, 1900369 https://doi.org/10.1002/pmic.201900369 2020 Chemistry – Basic Research
Mass‐Spectrometric Imaging of Electrode Surfaces—a View on Electrochemical Side Reactions Fangmeyer, J.; Behrens, A.; Gleede, B. et al. Angewandte Chemie 132(46), 2020, 20608-20613 https://doi.org/10.1002/ange.202010134 2020 Chemistry – Basic Research
A mass spectrometry-based approach gives new insight into organotin–protein interactions Will, J. M.; Erbacher, C.; Sperling, M. et al. Metallomics 12(11), 2020, 1702-1712 https://doi.org/10.1039/d0mt00171f 2020 Chemistry – Basic Research
Rapid N-Glycan Profiling of Serum and Plasma by a Novel Slide-Based Imaging Mass Spectrometry Workflow Blaschke, C. R. K.; Black, A. P.; Mehta, A. S. et al. Journal of the American Society for Mass Spectrometry 31, 2020, 2511-2520 https://doi.org/10.1021/jasms.0c00213 2020 Chemistry – Basic Research
Simulation of the oxidative metabolization pattern of netupitant, a NK1 receptorantagonist, by electrochemistry coupled to mass spectrometry Chira, R.; Fangmeyer, J.; Neaga, I. O. et al. Journal of Pharmaceutical Analysis - in press, 2021 https://doi.org/10.1016/j.jpha.2021.03.011 2021 Chemistry – Basic Research
Removal of optimal cutting temperature (O.C.T.) compound from embedded tissue for MALDI imaging of lipids Truong, J. X. M.; Spotbeen, X.; White, J. et al. Analytical and Bioanalytical Chemistry 413, 2021, 2695-2708 https://doi.org/10.1007/s00216-020-03128-z 2021 Chemistry – Basic Research
A TIMS-TOF mass spectrometry study of disaccharides from in-situ derivatization ESI with 3-pyridinylboronate Lia, L.; Yua, J.; Xiea, C. et al. Analyst 146, 2021, 75 https://doi.org/10.1039/D0AN01677B 2021 Chemistry – Basic Research
Complementing Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry Imaging with Chromatography Data for Improved Assignment of Isobaric and Isomeric Phospholipids Utilizing Trapped Ion Mobility-Mass Spectrometry Helmer, P. O.; Nordhorn, I. D.; Korf, A. et al. Analytical Chemistry 93, 2021, 2135-2143 https://doi.org/10.1021/acs.analchem.0c03942 2021 Chemistry – Basic Research
Aliquoting of isobaric labeling reagents for low concentration and single cell proteomics samples Yuan, Y.; Orsburn, B. C. bioRxiv pre-print, 2021 https://doi.org/10.1101/2021.06.23.449560 2021 Chemistry – Basic Research
Detection and mapping of haemoglobin variants in blood fingermarks by MALDI MS for suspect “profiling”. Heaton, C.; Witt, M.; Cole, L. et al. Analyst 146, 2021, 4290 https://doi.org/10.1039/d1an00578b 2021 Chemistry – Basic Research
OpenTIMS, TimsPy, and TimsR: Open and Easy Access to timsTOF Raw Data Łącki, M. K.; Startek, M. P.; Brehmer, S. et al. Journal of Proteome Research 20, 2021, 2122-2129 https://doi.org/10.1021/acs.jproteome.0c00962 2021 Chemistry – Basic Research
Rapid visualization of lipopeptides and potential bioactive groups of compounds by combining ion mobility and MALDI imaging mass spectrometry McCann, A.; Kune, C.; La Rocca, R. et al. Drug Discovery Today: Technologies - in press, 2021 https://doi.org/10.1016/j.ddtec.2021.08.003 2021 Chemistry – Basic Research

timsTOF fleX MALDI-2

timsTOF fleX MALDI-2

Title Author Publication Link year Application
Molecular insights into symbiosis — mapping sterols in a marine flatworm-algae-system using high spatial resolution MALDI-2-MS imaging with ion mobility separation Bien, T; Hambleton, E. A; Dreisewerd, K. et al. Analytical and Bioanalytical Chemistry 413, 2021, 2767-2777 https://doi.org/10.1007/s00216-020-03070-0 2021 Biology
Spatial Distribution of Isobaric Androgens in Target Tissues Using Chemical Derivatization and MALDI-2 on a Trapped Ion Mobility Quadrupole Time-of-Flight Instrument Mackay, C. L.; Soltwisch, J.; Heijs, B.; Smith, K. W.; Cruickshank, F. L.; Nyhuis, A.; Dreisewerd, K.; Cobice, D. RSC Advances, in press 2021 Biology
MALDI-2 on a Trapped Ion Mobility Quadrupole Time-of-Flight Instrument for Rapid Mass Spectrometry Imaging and Ion Mobility Separation of Complex Lipid Profiles Soltwisch, J.; Heijs, B.; Koch, A. et. al Analytical Chemistry 92, 2020, 8697-8703 https://doi.org/10.1021/acs.analchem.0c01747 2020 Chemistry – Basic Research
MALDI‑2 for the Enhanced Analysis of N‑Linked Glycans by Mass Spectrometry Imaging Heijs, B.; Potthoff, A.; Soltwisch, J. et al. Analytical Chemistry 92, 2020, 13904-13911 https://doi.org/10.1021/acs.analchem.0c02732 2020 Chemistry – Basic Research

 

For Research Use Only. Not for use in clinical diagnostic procedures.