timsTOF fleX Bibliography

timsTOF fleX Bibliography

The timsTOF fleX is a high performance UHR-OTOF system with integrated dual ESI/MALDI source, exhibiting high speed and robust MALDI Imaging. The additional trapped ion mobility feature adds another separation dimension to unravel complex data and make annotations in MALDI Images more reliable through CCS-matching. Since ASMS 2020 we switched to the next level to gain higher sensitivity for a broad range of compounds and equipped the instrument with a second laser allowing for postionization (MALDI-2).

MALDI-2 uses laser based postionization to enhance and enrich the MALDI experiment, providing access to chemical classes typically opaque to MALDI, at unprecedented sensitivity (2-3 orders of magnitude compared to traditional MALDI) Postionization significantly boosts ion yields for many different analytes and reduces the ever-challenging ion suppression effects in MALDI Imaging.

The peer-reviewed and in-peer-reviewing communications listed below is a non-exhaustive list from the work initiated on the first timsTOF fleX (MALDI-2) instruments in the field in the years 2019-2025 and many more are to come.

timsTOF fleX

TITLE AUTHOR PUBLICATION LINK YEAR APPLICATION
Spatial Proteomics by Parallel Accumulation‐Serial Fragmentation Supported MALDI MS/MS Imaging: A First Glance Into Multiplexed and Spatial Peptide Identification Li, M. J.; Meyer, L. C.; Meier, N. et al. Rapid Communications in Mass Spectrometry, 39, 9, e10006 https://doi.org/10.1002/rcm.10006 2025
Visualization and Spatial Mapping of PFAS in the Edible Storage Root of Radish Zuo, Y.; Zhang, W. Journal of Hazardous Materials Letters, 6, 100141 https://doi.org/10.1016/j.hazl.2025.100141 2025
Mass‐Guided Single‐Cell MALDI Imaging of Low‐Mass Metabolites Reveals Cellular Activation Markers Cairns, J. L.; Huber, J.; Lewen, A. et al. Advanced Science, 12, 5, 2410506 https://doi.org/10.1002/advs.202410506 2025
Comprehensive Approach for Sequential MALDI-MSI Analysis of Lipids, N-Glycans, and Peptides in Fresh-Frozen Rodent Brain Tissues Lee, Y.; Kaya, I.; Wik, E. et al. Analytical Chemistry, 97, 2, 1338-1346 https://doi.org/10.1021/acs.analchem.4c05665 2025
Advancing Atherosclerosis Research: The Power of Lipid Imaging with MALDI-MSI Bookmeyer, C. HM; Blanchar, F X. C.; Masana, L. et al. Atherosclerosis, 119130, in press https://doi.org/10.1016/j.atherosclerosis.2025.119130 2025
The spatiotemporal changes of metabolites in Pinellia ternata at different development stages by MALDI‐MSI Pei, Y.; Feng, X.; Liu, Z. et al. Physiologia Plantarum, 177, 1, e70049 https://doi.org/10.1111/ppl.70049 2025
Metabolic Atlas of Human Eyelid Infiltrative Basal Cell Carcinoma Huang, Y.; He, C.; Hu, Q. et al. Investigative Ophthalmology & Visual Science, 66, 1, 11 https://doi.org/10.1167/iovs.66.1.11 2025
Environmental exposure to common pesticide induces synaptic deficit and social memory impairment driven by neurodevelopmental vulnerability of hippocampal parvalbumin interneurons Di Re, J.; Koff, L.; Avchalumov, Y. et al. Journal of Hazardous Materials, 485, 136893 https://doi.org/10.1016/j.jhazmat.2024.136893 2025
Impact of aerobic exercise on brain metabolism: Insights from spatial metabolomic analysis Zheng, J.; Luo, W.; Kong, C. et al. Behavioural Brain Research, 478, 115339 https://doi.org/10.1016/j.bbr.2024.115339 2025
A multi-omics spatial framework for host-microbiome dissection within the intestinal tissue microenvironment Zhu, B.; Bai, Y.; Yeo, Y. et al. Nature Communications, 16, 1, 1230 https://doi.org/10.1038/s41467-025-56237-7 2025
The structure of Shigella virus Sf14 reveals the presence of two decoration proteins and two long tail fibers Subramanian, S.; Kerns, H. R.; Braverman, S. G. et al. Communications Biology, 8, 1, 222 https://doi.org/10.1038/s42003-025-07668-x 2025
Mass Spectrometry Imaging in Diagnostic and Toxicologic Pathology for Label-Free Detection of Molecules—From Basics to Practical Applications Vezzali, E.; Becker, M.; Romero-Palomo, F. et al. Toxicologic Pathology, in press https://doi.org/10.1177/01926233241311269 2025
Mass Spectrometry-Based Spatial Multiomics Revealed Bioaccumulation Preference and Region-Specific Responses of PFOS in Mice Cardiac Tissue Shi, R.; Chen, Y.; Wu, W. et al. Environmental Science & Technology, 59, 4, 1957-1968 https://doi.org/10.1021/acs.est.4c09874 2025
Spatiotemporal landscape of kidney in a mouse model of hyperuricemia at single‐cell level Chang, H.; Tao, Q.; Wei, L. et al. The FASEB Journal, 39, 2, e70292 https://doi.org/10.1096/fj.202401801RR 2025
Resolving tissue complexity by multimodal spatial omics modeling with MISO Coleman, K.; Schroeder, A.; Loth, M. et al. Nature methods, 1-9 https://doi.org/10.1038/s41592-024-02574-2 2025
Endothelial and neuronal engagement by AAV-BR1 gene therapy alleviates neurological symptoms and lipid deposition in a mouse model of Niemann-Pick type C2 Rasmussen, C. L. M.; Frederiksen, S. F.; Heegaard, C. W. et al. Fluids and Barriers of the CNS, 22, 1, 13 https://doi.org/10.1186/s12987-025-00621-4 2025
Tigulixostat Alleviates Hyperuricemic Nephropathy by Promoting M2 Macrophage Polarization Xue, L.; Tao, Q.; Chang, H. et al. Journal of Inflammation Research, 18, 17-30 https://doi.org/10.2147/JIR.S500101 2025
Subtilosin A production is influenced by surfactin levels in Bacillus subtilis Dinesen, C.; Vertot, M.; Jarmusch, S. A. et al. Microlife, 6, uqae029 https://doi.org/10.1093/femsml/uqae029 2025
Study of association between embryo growth arrest (EGA) and atmospheric fine particulate matter pollution (PM2. 5) and spatial metabolomics of villi derived from pregnant women Bai, L.; Fu, P.; Dong, C. et al. Journal of Hazardous Materials, 485, 136833 https://doi.org/10.1016/j.jhazmat.2024.136833 2025
Sequential MALDI-HiPLEX-IHC and Untargeted Spatial Proteomics Mass Spectrometry Imaging to Detect Proteomic Alterations Associated with Tumour Infiltrating Lymphocytes Bindi, G.; Monza, N.; de Oliveira, G. S. et al. Journal of Proteome Research, 24, 2, 871-880 https://doi.org/10.1021/acs.jproteome.4c00914 2025
Insight into distribution and composition of nonhuman N-Glycans in mammalian organs via MALDI-TOF and MALDI-MSI Guo, R.; Heijs, B.; Wang, W. et al. Carbohydrate Polymers, 351, 123065 https://doi.org/10.1016/j.carbpol.2024.123065 2025
Visualizing the spatial distribution of metabolites in tomato fruit at different maturity stages by matrix-assisted laser desorption/ionization mass spectrometry imaging Sihui, G.; Chaochao, L.; Zhuping, Y. et al. Food Research International, 206, 115973 https://doi.org/10.1016/j.foodres.2025.115973 2025
Comprehensive MALDI mass spectrometry imaging of tumor regions post-neoadjuvant therapy Xu, H.; Zhang, Q.; Yuan, J. et al. Anal Bioanal Chem 417, 2039–2046 https://doi.org/10.1007/s00216-025-05785-4 2025
Coupling proteomics and lipidomics for insights into regulation of oat (Avena sativa) grain lipid synthesis Wai, C. D. L.; Leigh, D.; John, C. H. et al. Food Chemistry, 478, 143644 https://doi.org/10.1016/j.foodchem.2025.143644 2025
N-linked fucosylated glycans are biomarkers for prostate cancer with a neuroendocrine and metastatic phenotype Ippolito, J. E.; Hartig, J. P.; Bejar, K. et al. Molecular Cancer Research, 23, 1, 59-70 https://doi.org/10.1158/1541-7786.MCR-24-0660 2025
An Updated Guide to the Identification, Quantitation, and Imaging of the Crustacean Neuropeptidome Wu, W.; Fields, L.; DeLaney, K. et al. Peptidomics: Methods and Strategies, 255-289 https://doi.org/10.1007/978-1-0716-3646-6_14 2024
6-Aza-2-Thiothymine as an Alternative Matrix for Spatial Proteomics with MALDI-MSI Denti, V.; Monza, N.; Bindi, G. et al. International Journal of Molecular Sciences, 25, 24, 13678 https://doi.org/10.3390/ijms252413678 2024
The spatial distribution of components in Moringa oleifera (Lam) seed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) Wang, T.; Wang, J.; Yang, S. et al. International Journal of Mass Spectrometry, 504, 117287 https://doi.org/10.1016/j.ijms.2024.117287 2024
Quantitative MALDI-MS and Imaging of Fungicide Pyrimethanil in Strawberries with 2-Nitrophloroglucinol as an Effective Matrix McDonald, H.; Li, Q.; Ashaduzzaman, M. et al. Journal of the American Society for Mass Spectrometry, 35, 6, 1272-1281 https://doi.org/10.1021/jasms.4c00066 2024
Accumulation of Bioactive Lipid Species in LPS-Induced Neuroinflammation Models Analysed with Multi-Modal Mass Spectrometry Imaging Razo, I. B.; Shea, K.; Allen, T. et al. International Journal of Molecular Sciences, 25, 22, 12032 https://doi.org/10.3390/ijms252212032 2024
Analyzing noncovalent interactions between notoginseng saponins and lysozyme by deposition scanning intensity fading MALDI‐TOF mass spectrometry Zhao, X.; Ren, J.; Wang, Z. et al. Journal of Mass Spectrometry, 59, 7, e5058 https://doi.org/10.1002/jms.5058 2024
Matrix-assisted laser desorption/ionization mass spectrometry imaging for quorum sensing Kuik, C.; van Hoogstraten, S. WG.; Arts, J. JC. et al. AMB Express, 14,1, 45 https://doi.org/10.1186/s13568-024-01703-6 2024
Spatial metabolomics to discover hypertrophic scar relevant metabolic alterations and potential therapeutic strategies: A preliminary study Li, J.; Zeng, S.; Zhang, E. et al. Bioorganic Chemistry, 153, 107873 https://doi.org/10.1016/j.bioorg.2024.107873 2024
Spatial resolution of renal amyloid deposits through MALDI-MSI: a combined digital and molecular approach to monoclonal gammopathies Bindi, G.; Smith, A.; Oliveira, G. et al. Journal of Clinical Pathology, 77, 6, 402-410 https://doi.org/10.1136/jcp-2023-208790 2024
Nitro Indole Derivatives as Novel Dual-Polarity Matrices for MALDI Mass Spectrometry and Imaging with Broad Applications Liang, Q.; Mondal, P.; Li, Q. et al. Analytical Chemistry, 96, 4, 1668-1677 https://doi.org/10.1021/acs.analchem.3c04684 2024
Unveiling the spatial distribution of plant defense metabolites in Dracaena cambodiana Pierre ex Gagnep under wound stress Zhang, Y.; Liu, Y.; Wang, B. et al. Industrial Crops and Products, 222, 15, 119941 https://doi.org/10.1016/j.indcrop.2024.119941 2024
TET3 regulates terminal cell differentiation at the metabolic level Mulet, I.; Grueso-Cortina, C.; Cortés-Cano, M. et al. Nature communications, 15, 1, 9749 https://doi.org/10.1038/s41467-024-54044-0 2024
Long-term exposure to triclocarban induces splenic injuries in mice: Insights from spatial metabolomics and lipidomics Xie, P.; Chen, J.; Dan, A. et al. Journal of Hazardous Materials, 480, 136370 https://doi.org/10.1016/j.jhazmat.2024.136370 2024
Processing Next-Generation Mass Spectrometry Imaging Data: Principal Component Analysis at Scale Krijnen, K.; Blenkinsopp, P.; Heeren, R. MA. Et al. Journal of the American Society for Mass Spectrometry, 35, 12, 3063-3069 https://doi.org/10.1021/jasms.4c00314 2024
Mass Spectrometry Imaging Distinguishes Biliary Toxicants on the Basis of Cellular Distribution Yang, J.; Bowman, A. P.; Buck, W. R. et al. Toxicologic Pathology, 53, 1, 55-64 https://doi.org/10.1177/01926233241303890 2024
Mass Spectrometry Imaging for Spatial Ingredient Classification in Plant-Based Food Vats, M.; Flinders, B.; Visvikis, T. et al. Journal of the American Society for Mass Spectrometry, 36, 1, 100-107 https://doi.org/10.1021/jasms.4c00353 2024
Spatial omics-based machine learning algorithms for the early detection of hepatocellular carcinoma Wang, M.; Grauzam, S.; Bayram, M. F. et al. Communications Medicine, 4, 1, 1-11 https://doi.org/10.1038/s43856-024-00677-7 2024
Sphingolipid Levels and Processing of the Retinyl Chromophore in the Retina of a Mouse Model of Niemann-Pick Disease Rahman, B.; Anderson, D. MG; Chen, C. et al. Investigative ophthalmology & visual science, 65, 14, 24 https://doi.org/10.1167/iovs.65.14.24 2024
Multiplexed and Multiomic Mass Spectrometry Imaging of MALDI-IHC Photocleavable Mass Tag Tissue Probes, N-Glycomics, and the Extracellular Matrisome from FFPE Tissue Sections Taylor, H. B.; Dunne, J. B.; Lim, M. J. et al. Tissue Proteomics: Methods and Protocols, 305-332 https://doi.org/10.1007/978-1-0716-4298-6_19 2024
Unlocking the Secrets of Insects: The Role of Mass Spectrometry to Understand the Life of Insects Mayorga‐Martino, V.; Mansurova, M.; Calla‐Quispe, E. et al. Mass Spectrometry Reviews https://doi.org/10.1002/mas.21922 2024
Unveiling a CAAX Protease‐Like Protein Involved in Didemnin Drug Maturation and Secretion Zou, X.; Hui, Z.; Shepherd, R. A. et al. Advanced Science, 11, 4, 2306044 https://doi.org/10.1002/advs.202306044 2024
High‐Throughput Miniaturized Synthesis of PROTAC‐Like Molecules Tian, Y.; Seifermann, M.; Bauer, L. et al. Small, 20, 26, 2307215 https://doi.org/10.1002/smll.202307215 2024
Mass Spectrometry Imaging with Trapped Ion Mobility Spectrometry Enables Spatially Resolved Chondroitin, Dermatan, and Hyaluronan Glycosaminoglycan Oligosaccharide Analysis In Situ Devlin, A.; Green, F.; Takats, Z. Analytical Chemistry, 96, 45, 17969-17977 https://doi.org/10.1021/acs.analchem.4c02706 2024
Tracking Drugs and Lipids: Quantitative Mass Spectrometry Imaging of Liposomal Doxorubicin Delivery and Bilayer Fate in Three-Dimensional Tumor Models Lopez, A.; Holbrook, J. H.; Kemper, G. E. et al. Analytical Chemistry, 96, 22, 9254-9261 https://doi.org/10.1021/acs.analchem.4c01586 2024
Spatial and widely targeted metabolomics and anatomical analysis reveal the mechanisms associated with petal bicolor patterning of two Dendrobium species Ou, M.; Li, H.; Liang, H. et al. Brazilian Journal of Botany, 47, 2, 367-380 https://doi.org/10.1007/s40415-024-01002-1 2024
Spatially Resolved Molecular Characterization of Noninvasive Follicular Thyroid Neoplasms with Papillary-like Nuclear Features (NIFTPs) Identifies a Distinct Proteomic Signature Associated with RAS-Mutant Lesions Denti, V.; Greco, A.; Alviano, A. M. et al. International Journal of Molecular Sciences, 25, 23, 13115 https://doi.org/10.3390/ijms252313115 2024
Differential protease specificity by collagenase as a novel approach to serum proteomics that includes identification of extracellular matrix proteins without enrichment Macdonald, J. K.; Clift, C. L.; Saunders, J. et al. Journal of the American Society for Mass Spectrometry, 35, 3, 487-497 https://doi.org/10.1021/jasms.3c00366 2024
Spatial neurolipidomics—MALDI mass spectrometry imaging of lipids in brain pathologies Jha, D.; Blennow, K.; Zetterberg, H. et al. Journal of Mass Spectrometry, 59, 3, e5008 https://doi.org/10.1002/jms.5008 2024
Determining the N-Glycan and Collagen/Extracellular Matrix Protein Compositions in a Novel Outcome Cohort of Prostate Cancer Tissue Microarrays Using MALDI-MSI Hartig, J. P.; Bejar, K.; Young, L. EA. et al. Cancer research communications, 4, 11, 3036-3048 https://doi.org/10.1158/2767-9764.CRC-24-0152 2024
MALDI MSI Protocol for Spatial Bottom-Up Proteomics at Single-Cell Resolution Grgic, A.; Cuypers, E.; Dubois, L. J. et al. Journal of Proteome Research, 23, 12, 5372-5379 https://doi.org/10.1021/acs.jproteome.4c00528 2024
Integration of mass cytometry and mass spectrometry imaging for spatially resolved single-cell metabolic profiling Nunes, J. B.; Ijsselsteijn, M. E.; Abdelaal, T. et al. Nature Methods, 21, 10, 1796-1800 https://doi.org/10.1038/s41592-024-02392-6 2024
Interplatform comparison between three ion mobility techniques for human plasma lipid collision cross sections George, A. C.; Schmitz, I.; Rouvière, F. et al. Analytica Chimica Acta, 1304, 342535 https://doi.org/10.1016/j.aca.2024.342535 2024
Supporting Information Revealing In Situ Molecular Profiles of Glomerular Cell Types and Substructures with Integrated Imaging Mass Spectrometry and Multiplexed Immunofluorescence Microscopy Esselman, A. B.; Moser, F. A.; Tideman, L. et al. Kidney International, 107, 2, 332 - 337 https://doi.org/10.1016/j.kint.2024.11.008 2024
MALDI-MSI-LC-MS/MS Workflow for Single-Section Single Step Combined Proteomics and Quantitative Lipidomics Hendriks, T. FE; Krestensen, K. K.; Mohren, R. et al. Analytical Chemistry, 96, 10, 4266-4274 https://doi.org/10.1021/acs.analchem.3c05850 2024
Detection, quantification, and isomer differentiation of per-and polyfluoroalkyl substances (PFAS) using MALDI-TOF with trapped ion mobility Reynolds, A. J.; Smith, A. M.; Qiu, T. A. Journal of the American Society for Mass Spectrometry, 35, 2, 317-325 https://doi.org/10.1021/jasms.3c00369 2024
Introducing FISCAS, a Tool for the Effective Generation of Single Cell MALDI-MSI Data Schwenzfeier, J.; Weischer, S.; Bessler, S. et al. Journal of the American Society for Mass Spectrometry, 35, 12, 2950-2959 https://doi.org/10.1021/jasms.4c00279 2024
Collision cross sections of large positive fullerene molecular ions and their use as ion mobility calibrants in trapped ion mobility mass spectrometry Oppenländer, T.; Gross, J. H. Analytical and Bioanalytical Chemistry, 416, 28, 6187-6197 https://doi.org/10.1007/s00216-024-05579-0 2024
Single Cell MALDI-MSI Analysis of Lipids and Proteins within a Replicative Senescence Fibroblast Model Sekera, E. R.; Rosas, L.; Holbrook, J. H. et al. J. Am. Soc. Mass Spectrom., 35, 12, 2815-2823 https://doi.org/10.1021/jasms.4c00095 2024
Enhanced surface colonisation and competition during bacterial adaptation to a fungus Richter, A.; Blei, F.; Hu, G. et al. Nature Communications, 15, 1, 4486 https://doi.org/10.1038/s41467-024-48812-1 2024
A Benzarone Derivative Inhibits EYA to Suppress Tumor Growth in SHH Medulloblastoma Hwang, G. H.; Pazyra-Murphy, M. F.; Seo, H. et al Cancer Research, 84, 6, 872 https://doi.org/10.1158/0008-5472.CAN-22-3784 2024
A flavonoid metabolon: cytochrome b 5 enhances B‐ring trihydroxylated flavan‐3‐ols synthesis in tea plants Ruan, H.; Gao, L.; Fang, Z. et al. The Plant Journal, 118, 6, 1793 https://doi.org/10.1111/tpj.16710 2024
Spatial omics reveals molecular changes in focal cortical dysplasia type II Vermeulen, I.; Rodriguez-Alvarez, N.; François, L. et al. Neurobiology of Disease, 195, 106491 https://doi.org/10.1016/j.nbd.2024.106491 2024
Feasibility of MALDI-MSI-Based Proteomics Using Bouin-Fixed Pathology Samples: Untapping the Goldmine of Nephropathology Archives Bindi, G.; Pagani, L.; Ceku, J. et al. Journal of Proteome Research, 23, 7, 2542 https://doi.org/10.1021/acs.jproteome.4c00198 2024
Inflammation‐associated intramyocellular lipid alterations in human pancreatic cancer cachexia Deng, M.; Cao, J.; van der Kroft, G. et al. Journal of cachexia, sarcopenia and muscle, 15, 4, 1283 https://doi.org/10.1002/jcsm.13474 2024
Spatial N-glycomics of the normal breast microenvironment reveal fucosylated and high-mannose N-glycan signatures related to BIRADS density and ancestry Rujchanarong, D.; Spruill, L.; Sandusky, G. E. et al. Glycobiology, 34, 8, cwae043 https://doi.org/10.1093/glycob/cwae043 2024
Molecular, metabolic, and subcellular mapping of the tumor immune microenvironment via 3D targeted and non-targeted multiplex multi-omics analyses Ferri-Borgogno, S.; Burks, J. K.; Seeley, E. H. et al. Cancers, 16, 5, 846 https://doi.org/10.3390/cancers16050846 2024
Serine Supports Epithelial and Immune Cell Function in Colitis Bai, J. D. K; Saha, S.; Wood, M. C.; Chen, Bo; Li, Jinyu; Dow, Lukas E; Montrose, David C; The American Journal of Pathology, 194, 6, 927 https://doi.org/10.1016/j.ajpath.2024.01.021 2024
Extracellular Microenvironment Alterations in Ductal Carcinoma In Situ and Invasive Breast Cancer Pathologies by Multiplexed Spatial Proteomics Hulahan, T. S.; Spruill, L.; Wallace, E. N. et al. International Journal of Molecular Sciences, 25, 12, 6748 https://doi.org/10.3390/ijms25126748 2024
MALDI TIMS IMS Reveals Ganglioside Molecular Diversity within Murine S. aureus Kidney Tissue Abscesses Djambazova, K. V.; Gibson-Corley, K. N.; Freiberg, J. A. et al. J. Am. Soc. Mass Spectrom. 35, 8, 1692–1701 https://doi.org/10.1021/jasms.4c00089 2024
Human Airway Organoids and Multimodal Imaging-Based Toxicity Evaluation of 1-Nitropyrene Zhou, Y.; Li, C.; Chen, Y. et al. Environmental Science & Technology, 58, 14, 6083 https://doi.org/10.1021/acs.est.3c07195 2024
DeepION: A Deep Learning-Based Low-Dimensional Representation Model of Ion Images for Mass Spectrometry Imaging Guo, L.; Xie, C.; Miao, R. et al. Analytical Chemistry, 96, 9, 3829 https://doi.org/10.1021/acs.analchem.3c05002 2024
Spatial metabolomics reveal metabolic alternations in the injured mice kidneys induced by triclocarban treatment Xie, P.; Chen, J.; Xia, Y. et al. Journal of Pharmaceutical Analysis, 101024 https://doi.org/10.1016/j.jpha.2024.101024 2024
Rapid Characterization of Phospholipids from Biological Matrix Enabled by Indium Tin Oxide (ITO) Coated Slide Assisted Enrichment MALDI Mass Spectrometry Huang, P.; Zhang, H.; Liu, Y. et al. Analysis & Sensing, 4, 3, e202300097 https://doi.org/10.1002/anse.202300097 2024
Spatial metabolomics identifies LPC (18: 0) and LPA (18: 1) in advanced atheroma with translation to plasma for cardiovascular risk estimation Cao, J.; Martin-Lorenzo, M.; van Kuijk, K. et al. Arteriosclerosis, Thrombosis, and Vascular Biology, 44, 3, 741 https://doi.org/10.1161/ATVBAHA.123.320278 2024
Optimized combination of MALDI MSI and immunofluorescence for neuroimaging of lipids within cellular microenvironments Shafer, C. C.; Neumann, E. K. Frontiers in Chemistry, 12, 1334209 https://doi.org/10.3389/fchem.2024.1334209 2024
Evaluating Drug Distribution in Rat Lung by Mass Spectrometry Imaging after Dry Powder Insufflation: Comparison of Jet-milling, Spray-drying, and Thin Film Freezing Moon, C.; Maier, E. Y.; Seeley, E. H. et al. Journal of Drug Delivery Science and Technology, 106206 https://doi.org/10.1016/j.jddst.2024.106206 2024
Mass Spectrometry Imaging of Amino Acids Enabled by Quaternized Pyridinium Salt MALDI Probe Zhou, H.; Yuan, J.; Xu, J. et al. Analytical Chemistry, 96, 34, 13785 https://doi.org/10.1021/acs.analchem.4c01147 2024
Integrative Single-Plaque Analysis Reveals Signature Aβ and Lipid Profiles in the Alzheimer’s Brain Enzlein, T.; Lashley, T.; Sammour, D. A. et al. Analytical Chemistry, 96, 24, 9799 https://doi.org/10.1021/acs.analchem.3c05557 2024
Lipid A double bond position determination using ozone and laser-induced dissociation Mikhael, A.; Petrosova, H.; Smith, D. et al. Rapid Communications in Mass Spectrometry, 38, 16, e9854 https://doi.org/10.1002/rcm.9854 2024
Biofortified Rice Provides Rich Sakuranetin in Endosperm Zhao, Y.; Hu, J.; Zhou, Z. et al. Rice, 17, 19 https://doi.org/10.1186/s12284-024-00697-w 2024
The mechanism of extracellular CypB promotes glioblastoma adaptation to glutamine deprivation microenvironment Yin, H.; Liu, Y.; Dong, Q. et al. Cancer Letters, 597, 216862 https://doi.org/10.1016/j.canlet.2024.216862 2024
Spatial MS multiomics on clinical prostate cancer tissues Truong, J. X. M.; Rao, S. R.; Ryan, F. J. et al. Analytical and Bioanalytical Chemistry, 416, 7, 1745 https://doi.org/10.1007/s00216-024-05178-z 2024
Effects of Sex and Western Diet on Spatial Lipidomic Profiles for the Hippocampus, Cortex, and Corpus Callosum in Mice Using MALDI MSI Shafer, C. C.; Di Lucente, J.; Mendiola, U. R. et al. Journal of the American Society for Mass Spectrometry, 35. 11, 2554-2563 https://doi.org/10.1021/jasms.3c00446 2024
Applying Spatial Metabolomics To Investigate Age-and Drug-Induced Neurochemical Changes Vallianatou, T.; Angerer, T. B.; Kaya, I. et al. ACS Chemical Neuroscience, 15, 15, 2822 https://doi.org/10.1021/acschemneuro.4c00199 2024
Utilization of bis-MPA Dendrimers for the Calibration of Ion Mobility Collision Cross Section Calculations Sekera, E. R.; Somogyi, Á.; Takáts, Z. et al. Journal of the American Society for Mass Spectrometry, 35, 6, 1101 https://doi.org/10.1021/jasms.3c00428 2024
Spatially resolved metabolomic dataset of distinct human kidney anatomic regions Li, H.; Humphreys, Benjamin D. Data in Brief, 54, 110431 https://doi.org/10.1016/j.dib.2024.110431 2024
Integrated Spatial Multi-Omics Study of Postmortem Brains of Alzheimer’s Disease Toyama, Y.; Nirasawa, T.; Morishima, M. et al. Acta Histochemica et Cytochemica, 57, 3, 119 https://doi.org/10.1267/ahc.24-00025 2024
Multi-omics study on the molecular mechanism of anlotinib in regulating tumor metabolism Lu, Y.; Han, X.; Zhang, H. et al. European Journal of Pharmacology, 975, 176639 https://doi.org/10.1016/j.ejphar.2024.176639 2024
Metabolite Profiling of Hydroponic Lettuce Roots Affected by Nutrient Solution Flow: Insights from Comprehensive Analysis Using Widely Targeted Metabolomics and MALDI Mass Spectrometry Imaging Approaches Baiyin, B.; Xiang, Y.; Shao, Y. et al. International Journal of Molecular Sciences, 25, 18, 10155 https://doi.org/10.3390/ijms251810155 2024
GMDS is a key driver of MYCN-amplified neuroblastoma core fucosylation and tumorigenesis Zhu, B.; Pitts, M.; Buoncristiani, M. et al. Cancer Research, 84, 6, 133 https://doi.org/10.1158/1538-7445.AM2024-133 2024
Effect of dynamic exclusion and the use of FAIMS, DIA and MALDI-mass spectrometry imaging with ion mobility on amyloid protein identification Aguilan, J. T.; Lim, J.; Racine-Brzostek, S. et al. Clinical Proteomics, 21, 1, 47 https://doi.org/10.1186/s12014-024-09500-w 2024
Spatial metabolomics using mass-spectrometry imaging to decipher the impact of high red meat diet on the colon metabolome in rat Ferey, J.; Mervant, L.; Naud, N. et al. Talanta, 276, 126230 https://doi.org/10.1016/j.talanta.2024.126230 2024
High-Resolution Spatial Lipidomic Profiling of the Kidney During Periods of Cyst Expansion in a Mouse Model of ADPKD Kriegel, A.; Stodola, T.; Patil, C. et al. Physiology, 39, S1, 1593 https://doi.org/10.1152/physiol.2024.39.S1.1593 2024
Mass spectrometry imaging combined with isotope tracer technology reveals dynamic metabolic responses of DGNs Shen, Q; Fang, L. P.; Luo, R. et al. The Innovation Life, 2, 1, 100056 https://doi.org/10.59717/j.xinn-life.2024.100056 2024
Gel-assisted mass spectrometry imaging enables sub-micrometer spatial lipidomics Chan, Y. H.; Pathmasiri, K. C; Pierre-Jacques, D. et al. Nature Communications, 15, 1, 5036 https://doi.org/10.1038/s41467-024-49384-w 2024
Enhancement of in situ detection and imaging of phytohormones in plant tissues by MALDI‐MSI using 2, 4‐dihydroxy‐5‐nitrobenzoic acid as a novel matrix Chen, L.; Zhang, Y.; Hao, Q. et al. New Phytologist, 243, 5, 2021 https://doi.org/10.1111/nph.19964 2024
Mass spectrometry imaging protocol for spatial mapping of lipids, N‐glycans and peptides in murine lung tissue Ngai, Y. T.; Briggs, M. T.; Mittal, P. et al. Rapid Communications in Mass Spectrometry, 38, 9, e9721 https://doi.org/10.1002/rcm.9721 2024
Mass Spectrometry-Imaging Analysis of Active Ingredients in the Leaves of Taxus cuspidata Zhan, X.; Zang, Y.; Ma, R. et al. ACS omega, 9, 16, 18634 https://doi.org/10.1021/acsomega.4c01440 2024
Advances in cellular and tissue-based imaging techniques for sarcoid granulomas Kim, J.; Dwivedi, G.; Boughton, B. A. et al. American Journal of Physiology-Cell Physiology, 326, 2024, 1, C10-C26 https://doi.org/10.1152/ajpcell.00507.2023 2024
Sodium doping and trapped ion mobility spectrometry improve lipid detection for novel MALDI-MSI analysis of oats Lau, W. C. D.; Donnellan, L.; Briggs, M. et al. Food Chemistry, 433, 2024, 137275 https://doi.org/10.1016/j.foodchem.2023.137275 2024
A multiplexed single cell proteomic workflow applicable to drug treatment studies Eberhard, C. D.; Orsburn, B. C. Methods in Molecular Biology, vol. 2923, 1-10 https://doi.org/10.1007/978-1-0716-3922-1_1 2024
Use of tryptic peptide MALDI mass spectrometry imaging to identify the spatial proteomic landscape of colorectal cancer liver metastases. Li, C. M. Y.; Briggs, M.; Lee, Y. R. et al. Clinical And Experimental Medicine, 24, 53 https://doi.org/10.1007/s10238-024-01311-5 2024
Competition for iron shapes metabolic antagonism between Bacillus subtilis and Pseudomonas marginalis Lyng, M.; Jørgensen, J. P. B.; Schostag, M. D. et al. The ISME Journal, 18, 2024, 1, wrad001 https://doi.org/10.1093/ismejo/wrad001 2024
A label-free approach for relative spatial quantitation of c-di-GMP in microbial biofilms McCaughey, C. S.; Trebino, M. A.; McAtamney, A. et al. Anal. Chem. 2024, 96, 21, 8308–8316 https://doi.org/10.1021/acs.analchem.3c04687 2024
Multimodal analytical tools for the molecular and elemental characterisation of lesions in brain tissue of multiple sclerosis patients Niehaus, P.; de Vega, R. G.; Haindl, M. T. et al. Talanta, 270, 2024, 125518 https://doi.org/10.1016/j.talanta.2023.125518 2024
Spatial Omics Reveals that Cancer-Associated Glycan Changes Occur Early in Liver Disease Development in a Western Diet Mouse Model of MASLD Ochoa-Rios, S.; Grauzam, S. E.; Gregory, R. et al. Journal of Proteome Research, 2024, 23, 2, 786–796 https://doi.org/10.1021/acs.jproteome.3c00672 2024
An N-glycome tissue atlas of 15 human normal and cancer tissue types determined by MALDI-imaging mass spectrometry Wallace, E. N.; West, C. A.; McDowell, C. T. et al. Scientific Reports, 14, 2024, 489 https://doi.org/10.1038/s41598-023-50957-w 2024
Imaging mass spectrometry of isotopically-resolved intact proteins on a trapped ion-mobility quadrupole time-of-flight mass spectrometer Klein, D.; Rivera, E.; Caprioli, R. et al. Analytical Chemistry, 96, 13, 5065 https://doi.org/10.1021/acs.analchem.3c05252 2024
The dentate gyrus differentially metabolizes glucose and alternative fuels during rest and stimulation York, E. M.; Miller, A.; Stopka, S. A. et al. Journal of Neurochemistry, 168, 5, 533 https://doi.org/10.1111/jnc.16004 2024
Spatial probabilistic mapping of metabolite ensembles in mass spectrometry imaging Abu Sammour, D.; Cairns, J. L.; Boskamp, T. et al. Nature Communications, 14, 1823 https://doi.org/10.1038/s41467-023-37394-z 2023
Unlocking the Hidden Depths: Multi-Modal Integration of Imaging Mass Spectrometry-Based and Molecular Imaging Techniques Akbari, B.; Huber, B. R.; Sherman, J. H. et al. Critical Reviews in Analytical Chemistry, 55,1, 109-138 https://doi.org/10.1080/10408347.2023.2266838 2023
Sample Preparation Method for MALDI Mass Spectrometry Imaging of Fresh-Frozen Spines Bender, K. J; Wang, Y.; Zhai, C. Y. et al. Analytical Chemistry, 95, 47, 17337–17346 https://doi.org/10.1021/acs.analchem.3c03672 2023
Visualization of metabolites and microbes at high spatial resolution using MALDI mass spectrometry imaging and in situ fluorescence labeling Bourceau, P.; Geier, B.; Suerdieck, V. et al. Nature Protocols, 18, 3050–3079 https://doi.org/10.1038/s41596-023-00864-1 2023
Rewiring of the N-Glycome with prostate cancer progression and therapy resistance Butler, W.; McDowell, C.; Yang, Q. et al. NPJ Precision Oncology, 7, 22 https://doi.org/10.1038/s41698-023-00363-2 2023
Evaluation of antibody-based single cell type imaging techniques coupled to multiplexed imaging of N-glycans and collagen peptides by matrix-assisted laser desorption/ionization mass spectrometry imaging Dunne, J.; Griner, J.; Romeo, M. et al. Analytical and Bioanalytical Chemistry, 415, 7011–7024 https://doi.org/10.1007/s00216-023-04983-2 2023
Functional mass spectrometry imaging maps phospholipase-A2 enzyme activity during osteoarthritis progression Fan, X.; Young, R. S. E.; Sun, A. R. et al. Theranostics, 13, 13, 4636–4649 https://doi.org/10.7150/thno.86623 2023
Uncovering lipid dynamics in Staphylococcus aureus osteomyelitis using multimodal imaging mass spectrometry Good, C. J.; Butrico, C. E.; Colley, M. E. et al. Cell Chem Biol., 31, 10, 1852-1868 https://doi.org/10.1016/j.chembiol.2024.09.005 2024
On-tissue dataset-dependent MALDI-TIMS-MS2 bioimaging Heuckeroth, S.; Behrens, A.; Wolf, C. et al. Nature Communications, 14, 7495 https://doi.org/10.1038/s41467-023-43298-9 2023
Ion Mobility Mass Spectrometry for the Separation and Characterization of Small Molecules Liu, L.; Wang, Z.; Zhang, Q. et al. Analytical Chemistry, 95, 1, 134–151 https://doi.org/10.1021/acs.analchem.2c02866 2023
Visualizing the Distribution of Jujube Metabolites at Different Maturity Stages Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Lu, D.; Wu, Y.; Zhang, J. et al. Foods, 12, 20, 3795 https://doi.org/10.3390/foods12203795 2023
Amino acid catabolite markers for early prognostication of pneumonia in patients with COVID-19 Maeda, R.; Seki, N.; Uwamino, Y. et al. Nature Communications, 14, 1, 8469 https://doi.org/10.1038/s41467-023-44266-z 2023
Spatial metabolomics principles and application to cancer research Planque, M.; Igelmann, S.; Campos, A. M. F. et al. Current Opinion in Chemical Biology, 76, 102362 https://doi.org/10.1016/j.cbpa.2023.102362 2023
Multi-omics data reveals aberrant gut microbiota-host glycerophospholipid metabolism in association with neuroinflammation in APP/PS1 mice Qian, X.; Hai, W.; Chen, S. et al. Gut Microbes, 15, 2, 2282790 https://doi.org/10.1080/19490976.2023.2282790 2023
SETD2 deficiency accelerates sphingomyelin accumulation and promotes the development of renal cancer Rao, H.; Liu, C.; Wang, A. et al. Nature Communications, 14, 7572 https://doi.org/10.1038/s41467-023-43378-w 2023
A multimodal pipeline for image correction and registration of mass spectrometry imaging with microscopy Tang, W.; Li, Z.; Zou, Y, et al. Analytica Chimica Acta, 1283, 341969 https://doi.org/10.1016/j.aca.2023.341969 2023
Toward Omics-Scale Quantitative Mass Spectrometry Imaging of Lipids in Brain Tissue Using a Multiclass Internal Standard Mixture Vandenbosch, M.; Mutuku, S. M.; Mantas, M. J. Q. et al. Analytical Chemistry, 95, 51, 18719–18730 https://doi.org/10.1021/acs.analchem.3c02724 2023
Hepatic glutamine synthetase controls N 5-methylglutamine in homeostasis and cancer Villar, V. H.; Allega, M. F.; Deshmukh, R.; Ackermann, T. et al. Nature Chemical Biology, 19, 292–300 https://doi.org/10.1038/s41589-022-01154-9 2023
Spatial Lipidomics Reveals Lipid Changes in the Cotyledon and Plumule of Mung Bean Seeds during Germination Xie, P.; Chen, J.; Wu, P. et al. Journal of Agricultural and Food Chemistry, 71, 49, 19879–19887 https://doi.org/10.1021/acs.jafc.3c06029 2023
Untargeted and spatial-resolved metabolomics characterize serum and tissue-specific metabolic reprogramming in acute kidney injury Xu, B.; Li, W.; Zhang, Y. et al. Heliyon, 9, 11, e21171 https://doi.org/10.1016/j.heliyon.2023.e21171 2023
Single-cell lipidomics enabled by dual-polarity ionization and ion mobility-mass spectrometry imaging Zhang, H.; Liu, Y.; Fields, L. et al. Nature Communications, 14, 5185 https://doi.org/10.1038/s41467-023-40512-6 2023
Tandemly duplicated CYP82Ds catalyze 14-hydroxylation in triptolide biosynthesis and precursor production in Saccharomyces cerevisiae Zhang, Y.; Gao, J.; Ma, L. et al. Nature Communications, 14, 875 https://doi.org/10.1038/s41467-023-36353-y 2023
Unveiling targeted spatial metabolome of rice seed at the dough stage using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry imaging Zhao, Y.; Hu, J.; Zhang, Y. et al. Food Research International, 174, 113578 https://doi.org/10.1016/j.foodres.2023.113578 2023
A super-resolution strategy for mass spectrometry imaging via transfer learning Liao, T.; Ren, Z.; Chai, Z. et al. Nature Machine Intelligence, 5, 656-668 https://doi.org/10.1038/s42256-023-00677-7 2023 Method Development
Interpretable dimensionality reduction and classification of mass spectrometry imaging data in a visceral pain model via non-negative matrix factorization Pathirage, K.; Virmani, A.; Scott, A. J. et al. PLOS One, 19, 10, e0300526 https://doi.org/10.1101/2023.04.24.538180 2023 Method Development
Investigating post-traumatic syringomyelia and local fluid osmoregulation via a rat model Pukale, D. D.; Adkins-Travis, K.; Aryal, S. R. et al. Fluids and Barriers of the CNS, 21, 1, 19 https://doi.org/10.1186/s12987-024-00514-y 2024 Biology - Clinical
Unveiling the spatial metabolome and anti-atherosclerosis effects of Allium macrostemon Bunge and Allium chinense G. Don Li, S.; Lin, P.; Xing, H. et al. Arabian Journal of Chemistry, 16, 6, 104772 https://doi.org/10.1016/j.arabjc.2023.104772 2023 Biology - Clinical
FluoMALDI microscopy: matrix co-crystallization simultaneously enhances fluorescence and MALDI imaging Yang, E.; Shen, X. E.; West-Foyle, H. et al. Advanced Science, 10, 35, 2304343 https://doi.org/10.1101/2023.05.27.542340 2023 Method Development
Sleep deprivation exacerbates microglial reactivity and Aβ deposition in a TREM2-dependent manner in mice Parhizkar, S.; Gent, G.; Chen, Y. et al. Science Translational Medicine, 15, 693 https://doi.org/10.1126/scitranslmed.ade6285 2023
Colitis ameliorates cholestatic liver disease via suppression of bile acid synthesis Gui, W.; Hole, M. J.; Molinaro, A. et al. Nature Communications, 14, 3304 https://doi.org/10.1038/s41467-023-38840-8 2023 Biology - Clinical
Using mass spectrometry imaging to map fluxes quantitatively in the tumor ecosystem Schwaiger-Haber, M.; Stancliffe, E.; Anbukumar, D. S. et al. Nature Communications 14, 2876 https://doi.org/10.1038/s41467-023-38403-x 2023
Strategic self-limiting production of infectious HIV particles by CRISPR in permissive cells Liu, H.; Chen, C.; Liao, S. et al. Molecular Therapy - Nucleic Acids, 32, 1010-1025 https://doi.org/10.1016/j.omtn.2023.04.027 2023 Biology
Strigolactones repress nodule development and senescence in pea Van Dingenen, J.; De Keyser, A.; Desmet, S. et al. The Plant Journal, 116, 1, 7-22 https://doi.org/10.1111/tpj.16421 2023 Biology
Integrated mass spectrometry imaging and single‐cell transcriptome atlas strategies provide novel insights into taxoid biosynthesis and transport in Taxus mairei stems Yu, C.; Hou, K.; Zhang, H. et al. The Plant Journal, 115, 5, 1243-1260 https://doi.org/10.1111/tpj.16315 2023 Biology
Spatial metabolomics reveals glycogen as an actionable target for pulmonary fibrosis Conroy, L. R.; Clarke, H. A.; Allison, D. B. et. al. Nature Communications, 14, 1, 2759 https://doi.org/10.1038/s41467-023-38437-1 2023 Biology - Clinical
WSD-0922, a novel brain-penetrant inhibitor of epidermal growth factor receptor, promotes survival in glioblastoma mouse models Conage-Pough, J. E.; Stopka, S. A.; Oh, J. et al. Neuro-Oncology Advances, 5, 1, vdad066 https://doi.org/10.1093/noajnl/vdad066 2023 Biology - Clinical
Exposure to isocyanates predicts atopic dermatitis prevalence and disrupts therapeutic pathways in commensal bacteria Zeldin, J.; Chaudhary, P. P.; Spathies, J. et al. Science Advances, 9,eade8898 https://doi.org/10.1126/sciadv.ade8898 2023 Biology - Clinical
Analysis of N-linked glycan alterations in tissue and serum reveals promising biomarkers for intrahepatic Cholangiocarcinoma Ochoa-Rios, S.; Blaschke, C. R. K.; Wang, M. et al. Cancer Research Communications, 3, 3, 383-394 https://doi.org/10.1158/2767-9764.crc-22-0422 2023 Biology - Clinical
Laser desorption/ionization-mass spectrometry for the analysis of interphases in lithium ion batteries Göldner, V.; Quach, L.; Adhitama, E. et al. iScience, 26, 9, 107517 https://doi.org/10.1016/j.isci.2023.107517 2023 Chemistry – Basic Research
Direct mass spectrometric imaging of document handwriting with laser desorption ionization and post ultraviolet photodissociation Jia, S.; Zhou, X.; Hu, X. et al. Analytica Chimica Acta,1265, 341267 https://doi.org/10.1016/j.aca.2023.341267 2023 Chemistry – Basic Research, Forensic
Bioorthogonal Chemical Labeling Probes Targeting Sialic Acid Isomers for N‑Glycan MALDI Imaging Mass Spectrometry of Tissues, Cells, and Biofluids Lu, X.; McDowell, C. T.; Blaschke, C. R. K. et al. Analytical Chemistry, 95, 19, 7475-7486 https://doi.org/10.1021/acs.analchem.2c04882 2023 Method Development
Mobility-resolved broadband dissociation and parallel reaction monitoring for laser desorption/ionization-mass spectrometry - Tattoo pigment identification supported by trapped ion mobility spectrometry Wolf, C.; Behrens, A.; Brungs, C. et al. Analytica Chimica Acta 1242, 340796 https://doi.org/10.1016/j.aca.2023.340796 2023 Method Development
Evaluating the Pharmacokinetics and Pharmacodynamics of Chemotherapeutics within a Spatial SILAC-Labeled Spheroid Model System Beller, N. C.; Wang, Y.; Hummon, A. B. Analytical Chemistry, 95, 30, 11263-11272 https://doi.org/10.1021/acs.analchem.3c00905 2023 Biology - Clinical, Method Development
De novo phytosterol synthesis in animals Michellod, D.; Bien, T.; Birgel, D. et al. Science, 380, 6644, 520-526 https://doi.org/10.1126/science.add7830 2023
Microscopy-Directed Imaging Mass Spectrometry for Rapid High Spatial Resolution Molecular Imaging of Glomeruli Esselman, A. B.; Patterson, N. H.; Migas, L. G. et al. Journal of The American Society for Mass Spectrometry, 34, 7, 1305-1314 https://doi.org/10.1021/jasms.3c00033 2023 Method Development
High-Resolution N‑Glycan MALDI Mass Spectrometry Imaging of Subchondral Bone Tissue Microarrays in Patients with Knee Osteoarthritis Lee, Y.; Briggs, M. T.; Kuliwaba, J. S. et al. Analytical Chemistry, 13, 1, 2776 https://doi.org/10.1021/acs.analchem.3c00348 2023 Biology - Clinical
Inosine enhances tumor mitochondrial respiration by inducing Rag GTPases and nascent protein synthesis under nutrient starvation Li, M.; Wu, X.; Jing, W. et al. Cell Death & Disease, 14, 492 https://doi.org/10.1038/s41419-023-06017-2 2023 Biology - Clinical
Spatially resolved metabolomics and isotope tracing reveal dynamic metabolic responses of dentate granule neurons with acute stimulation Miller, A.; York, E.; Stopka, S. et al. Nature Metabolism, 5, 1820-1835 https://doi.org/10.21203/rs.3.rs-2276903/v1 2023 Biology - Clinical
Spatially Resolved Metabolites in Stable and Unstable Human Atherosclerotic Plaques Identified by Mass Spectrometry Imaging Seeley, E. H.; Liu, Z.; Yuan, S. et al. Arteriosclerosis Thrombosis and Vascular Biology, 43. 9. 1626-1635 https://doi.org/10.1161/atvbaha.122.318684 2023 Biology - Clinical
Optimized protocol for MALDI MSI of N-glycans using an on-tissue digestion in fresh frozen tissue sections Grgic, A.; Krestensen, K. K.; Heeren, R. M. A. Scientific Reports, 13, 2776 https://doi.org/10.1038/s41598-023-29560-6 2023 Protocol
Development of an Antibody-Based Platform for the Analysis of Immune Cell-Specific N‑linked Glycosylation Dressman, J. W.; McDowell, C. T.; Lu, X. et al. Analytical Chemistry, 95, 27, 10289-10297 https://doi.org/10.1021/acs.analchem.3c00838 2023 Method Development
Complex-Type N‑Glycans Are Associated with Cartilage Degeneration within Different Loading Sites of the Tibial Plateau for Knee Osteoarthritis Patients Lee, Y.; Briggs, M. T.; Kuliwaba, J. S. et al. Journal of Proteome Research, 22, 8, 2694-2702 https://doi.org/10.1021/acs.jproteome.3c00251 2023 Biology - Clinical
MALDI HiPLEX-IHC: multiomic and multimodal imaging of targeted intact proteins in tissues Lim, M. J.; Yagnik, G.; Henkel, C. et al. Frontiers in Chemistry, 11, 1182404 https://doi.org/10.3389/fchem.2023.1182404 2023 Method Development
MALDI-IHC-Guided In-Depth Spatial Proteomics: Targeted and Untargeted MSI Combined Claes, B. S. R.; Krestensen, K. K.; Yagnik, G. et al. Analytical Chemistry, 95, 4, 2329-2338 https://doi.org/10.1021/acs.analchem.2c04220 2023 Biology, Method Development
Visualization of Differential Cardiolipin Profiles in Murine Retinal Cell Layers by High-Resolution MALDI Mass Spectrometry Imaging Bessler, S.; Soltwisch, J.; Dreisewerd, K. Analytical Chemistry, 95, 30, 11352-11358 https://doi.org/10.1021/acs.analchem.3c01465 2023 Biology
Enhancement of Lipid Signals in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry with Ammonium Fluoride as a Matrix Additive Holbrook, J. H.; Sekera, E. R.; Lopez, A. et al. Analytical Chemistry, 95, 28, 10603-10609 https://doi.org/10.1021/acs.analchem.3c00753 2023 Method Development
A Multimodal SIMS/MALDI Mass Spectrometry Imaging Source with Secondary Electron Imaging Capabilities for Use with timsTOF Instruments Krijnen, K.; Keelor, J. D.; Böhm, S. et al. Journal of The American Society for Mass Spectrometry, 34, 4, 720-727 https://doi.org/10.1021/jasms.2c00381 2023 Method Development
Applying imaging mass spectrometry to define the N-glycan profiles of co-localized virus and immune cell infiltrates in post-COVID-19 infected lung autopsy tissues Jones,E. E.; Drake, R. R.; Dressman, J. W. et al. Frontiers in Analytical Science, 2, 1021008 https://doi.org/10.3389/frans.2022.1021008 2022 Biology - Clinical
Deep topographic proteomics of a human brain tumour Davis, S.; Scott, C.; Oetjen, J. et al. Nature Communications, 14, 7710 https://doi.org/10.1101/2022.03.21.485119 2022 Biology
Utilizing PET and MALDI Imaging for Discovery of a Targeted Probe for Brain Endocannabinoid α/β‑Hydrolase Domain 6 (ABHD6) Mardon, K.; Patel, J. Z.; Savinainen, J. R. et al. Journal of Medicinal Chemistry, 66, 1, 538-552 https://doi.org/10.1021/acs.jmedchem.2c01485 2022 Biology
Fallopian tube secreted protein affects ovarian metabolites in high grade serous ovarian cancer Bergsten, T. M.; Levy, S. E.; Zink, K. E. et al. Frontiers in Cell and Developmental Biology, 10, 1042734 https://doi.org/10.3389/fcell.2022.1042734 2022 Biology - Clinical
Optimization of Zebrafish Larvae Sectioning for Mass Spectrometry Imaging Yang, J.; Rendino, L.; Cassar, S. et al. Pharmaceuticals, 15(10), 1230 https://doi.org/10.3390/ph15101230 2022 Method Development
Integrating age, BMI, and serum N-glycans detected by MALDI mass spectrometry to classify suspicious mammogram findings as benign lesions or breast cancer Blaschke, C. R. K.; Hill, E. G.; Mehta, A. S. et al. Scientific Reports, 12(1), 20801 https://doi.org/10.1038/s41598-022-25401-0 2022 Biology - Clinical
PARP-inhibition reprograms macrophages toward an anti-tumor phenotype Wang, L.; Wang, D.; Sonzogni, O. et al. Cell Reports, 41(2), 111462 https://doi.org/10.1016/j.celrep.2022.111462 2022 Biology - Clinical
Spatial segmentation of mass spectrometry imaging data featuring selected principal components Zou, Y.; Tang, W.; Li, B. Talanta, 253, 123958 https://doi.org/10.1016/j.talanta.2022.123958 2022 Method Development
Device-Controlled Microcondensation for Spatially Confined On-Tissue Digests in MALDI Imaging of N-Glycans Fülöp, A.; Marsching, C.; Barka, F. et al. Pharmaceuticals, 15(11), 1356 https://doi.org/10.3390/ph15111356 2022 Method Development
Visualizing the Distribution of Lipids in Peanut Seeds by MALDI Mass Spectrometric Imaging Wang, X., Chen, Y., Liu, Y. et al. Foods, 11(23), 3888 https://doi.org/10.3390/foods11233888 2022 Biology
Mass Spectrometry Imaging of Lipids Using MALDI Coupled with Plasma-Based Post-Ionization on a Trapped Ion Mobility Mass Spectrometer Michael, J. A.; Mutuku, S. M.; Ucur, B. et al Anal. Chem. 94, 50 https://doi.org/10.1021/acs.analchem.2c03745 2022 Method Development
Chiral derivatization-enabled discrimination and on-tissue detection of proteinogenic amino acids by ion mobility mass spectrometry Chengyi, X.; Yanyan, C.; Xiaoxiao, W. et al. Xin Diao, Lin Zhu, Jianing Wang and Zongwei Cai Chemical Science, 13, 14114-14123 https://doi.org/10.1039/d2sc03604e 2022 Method Development
3‑Acetylpyridine On-Tissue Paternò−Büchi Derivatization Enabling High Coverage Lipid C=C Location-Resolved MS Imaging in Biological Tissues Yanyan, C.; Chengyi, X.; Xiaoxiao, W. et al. Min Li, Jianing Wang,* and Zongwei Cai* Anal. Chem., 94, 15367−15376 https://doi.org/10.1021/acs.analchem.2c03089 2022 Method Development
Visual authentication of steroidal saponins in Allium macrostemon Bge. and Allium chinense G. Don using MALDI-TOF imaging mass spectrometry and their structure activity relationship Duan, S.; Li, X.; Yao, Z. et al. Arabian Journal of Chemistry, 15(10), 104138 https://doi.org/10.1016/j.arabjc.2022.104138 2022 Biology
Unraveling metabolic alterations in transgenic mouse model of Alzheimer's disease using MALDI MS imaging with 4-aminocinnoline-3-carboxamide matrix Chen, Y.; Hu, D.; Zhao, L.; Tang, W.; Li, B. Analytica Chimica Acta, 1192, 339337 https://www.sciencedirect.com/science/article/abs/pii/S0003267021011636 2022 Biology - Clinical
TIMSCONVERT: A workflow to convert trapped ion mobility data to open data formats Luu, G. T.; Lizama-Chamu, I.; McCaughey, C. S. et al. Bioinformatics, 38(16), 4046–4047 https://doi.org/10.1093/bioinformatics/btac419 2022 Protocol
Tattoo Pigment Identification in Inks and Skin Biopsies of Adverse Reactions by Complementary Elemental and Molecular Bioimaging with Mass Spectral Library Matching Brungs, C.; Schmid, R.; Wolf, C. et al. Analytical Chemistry, 94(8), 3581-3589 https://doi.org/10.1021/acs.analchem.1c04922 2022 Chemistry – Basic Research
Spatially resolved characterization of tissue metabolic compartments in fasted and high-fat diet livers Stopka, S. A.; van der Reest, J.; Abdelmoula, W. M. et al. PLOS ONE, 17(9), e0261803 https://doi.org/10.1371/journal.pone.0261803 2022 Biology - Clinical
Single cell spatial analysis reveals the topology of immunomodulatory purinergic signaling in glioblastoma Coy, S.; Wang, S.; Stopka, S. A. et al. Nature Communications, 13(1), 4814 https://doi.org/10.1038/s41467-022-32430-w 2022 Biology - Clinical
Shielding the oil reserves: the scutellum as a source of chemical defenses Murphy, K. M.; Poretsky, E.; Liu, H. et al. Plant Physiology, 188(4), 1944-1949 https://doi.org/10.1093/plphys/kiac038 2022 Biology
Novel Combined Enzymatic Approach to Analyze Nonsialylated N-Linked Glycans through MALDI Imaging Mass Spectrometry Andrew, T. D.; Hongyan, L.; Richard, R. D. et al. J Proteome Res. 21(8), 1930-1938 https://doi.org/10.1021/acs.jproteome.2c00193 2022 Biology - Clinical
Neuroinflammation in neuronopathic Gaucher disease: Role of microglia and NK cells, biomarkers, and response to substrate reduction therapy Boddupalli, C. S.; Nair, S.; Belinsky, G. et al. eLife, 11, e79830 https://doi.org/10.7554/elife.79830 2022 Biology - Clinical
Neglected Very Long-Chain Hydrocarbons and the Incorporation of Body Surface Area Metrics Reveal Novel Perspectives for Cuticular Profile Analysis in Insects Golian, M.; Bien, T.; Schmelzle, S. et al. Insects, 13, 1, 83 https://doi.org/10.3390/insects13010083 2022 Biology
Mass spectrometry imaging to explore molecular heterogeneity in cell culture Bien, T.; Koerfer, K.; Schwenzfeier, J. et al. Proceedings of the National Academy of Sciences of the United States of America, 119(29), e2114365119 https://doi.org/10.1073/pnas.2114365119 2022 Biology
MALDI Mass Spectrometry Imaging for the Distinction of Adenocarcinomas of the Pancreas and Biliary Tree Bollwein, C.; Gonҫalves, J. P. L.; Utpatel, K. et al. Molecules, 27(11), 3464 https://doi.org/10.3390/molecules27113464 2022 Biology - Clinical
LPS-induced lipid alterations in microglia revealed by MALDI mass spectrometry-based cell fingerprinting in neuroinflammation studies Blank, M.; Enzlein, T.; Hopf, C. et al. Scientific Reports, 12(1), 2908 https://doi.org/10.1038/s41598-022-06894-1 2022 Biology - Clinical
Lactate is an epigenetic metabolite that drives survival in model systems of glioblastoma Torrini, C.; Nguyen, T. T. T.; Shu, C. et al. Molecular Cell, 82(16), 3061-3076.e6 https://doi.org/10.1016/j.molcel.2022.06.030 2022 Biology - Clinical
Integrating multiplex immunofluorescent and mass spectrometry imaging to map myeloid heterogeneity in its metabolic and cellular context Goossens, P.; Lu, C.; Cao, J. et al. Cell Metabolism, 34(8), 1214-1225.e6 https://doi.org/10.1016/j.cmet.2022.06.012 2022 Biology - Clinical
In situ mass spectrometry imaging reveals heterogeneous glycogen stores in human normal and cancerous tissues Young, L. E. A.; Conroy, L. R.; Clarke, H. A. et al. EMBO Molecular Medicine, e16029 https://doi.org/10.15252/emmm.202216029 2022 Biology
Imaging Mass Spectrometry Reveals Complex Lipid Distributions Across Staphylococcus aureus Biofilm Layers Rivera, E. S.; Weiss, A.; Migas, L. G. et al. Journal of Mass Spectrometry and Advances in the Clinical Lab, 26, 36-46 https://doi.org/10.1016/j.jmsacl.2022.09.003 2022 Biology
Imaging Mass Spectrometry Reveals Alterations in N-Linked Glycosylation That Are Associated With Histopathological Changes in Nonalcoholic Steatohepatitis in Mouse and Human Ochoa-Rios, S.; O'Connor, I. P.; Kent, L. N. et al. Molecular & Cellular Proteomics, 21(5), 100225 https://doi.org/10.1016/j.mcpro.2022.100225 2022 Biology - Clinical
Home-Built Spinning Apparatus for Drying Agarose-Based Imaging Mass Spectrometry Samples Lusk, H. J.; Levy, S. E.; Bergsten, T. M. et al. Journal of The American Society for Mass Spectrometry, 33(7), 1325-1328 https://doi.org/10.1021/jasms.2c00044 2022 Protocol
Forensic Discrimination of Differentially Sourced Animal Blood Using a Bottom-Up Proteomics Based MALDI MS Approach Kennedy, K.; Cole, L.; Witt, M. et al. Molecules, 27(7), 2039 https://doi.org/10.3390/molecules27072039 2022 Forensic
Establishment of a transparent soil system to study Bacillus subtilis chemical ecology Lozano-Andrade, C. N.; Nogueira, C. G.; Wibowo, M. et al. ISME Communications, 3,110 https://doi.org/10.1101/2022.01.10.475645 2022 Biology
Development of an Automatic Ultrasonic Matrix Sprayer for Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Meng, L.; Han, J.; Chen, J. et al. Analytical Chemistry, 94(17), 6457-6462 https://doi.org/10.1021/acs.analchem.2c00403 2022 Method Development
Development of a cell‐free strategy to recover aged skeletal muscle after disuse Wu, Y.; De La Toba, E. A.; Dvoretskiy, S. et al. The Journal of Physiology, 600(13), 3029-3030 https://doi.org/10.1113/JP282867 2022 Biology - Clinical
De novo pyrimidine synthesis is a targetable vulnerability in IDH mutant glioma Shi, D. D.; Savani, M. R.; Levitt, M. M. et al. Cancer Cell, 40(9), 939-956.e16 https://doi.org/10.1016/j.ccell.2022.07.011 2022 Biology - Clinical
Co-culture with Acinetobacter johnsonii enhances benzalkonium chloride resistance in Salmonella enterica via triggering lipid A modifications Wilson, A.; Fegan, N.; Turner, M. S. et al. International Journal of Food Microbiology, 381, 109905 https://doi.org/10.1016/j.ijfoodmicro.2022.109905 2022 Biology
A non-dividing cell population with high pyruvate dehydrogenase kinase activity regulates metabolic heterogeneity and tumorigenesis in the intestine Sebastian, C.; Ferrer, C.; Serra, M. et al. Nature Communications, 13(1), 1503 https://doi.org/10.1038/s41467-022-29085-y 2022 Biology - Clinical
A druggable addiction to de novo pyrimidine biosynthesis in diffuse midline glioma Pal, S.; Kaplan, J. P.; Nguyen, H. et al. Cancer Cell, 40(9), 957-972.e10 https://doi.org/10.1016/j.ccell.2022.07.012 2022 Biology - Clinical
‘On the Spot’ Digital Pathology of Breast Cancer Based on Single-Cell Mass Spectrometry Imaging Cuypers, E.; Claes, B. S. R.; Biemans, R. et al. Analytical Chemistry, 94(16), 6180-6190 https://doi.org/10.1021/acs.analchem.1c05238 2022 Biology - Clinical
High Spatial Resolution MALDI Imaging Mass Spectrometry of Fresh-Frozen Bone Good, C. J.; Neumann, E. K.; Butrico, C. E. et al. Analytical Chemistry, 94(7), 3165-3172 https://doi.org/10.1021/acs.analchem.1c04604 2022 Biology
Removal of optimal cutting temperature (O.C.T.) compound from embedded tissue for MALDI imaging of lipids Truong, J. X. M.; Spotbeen, X.; White, J. et al. Analytical and Bioanalytical Chemistry, 413, 2695-2708 https://doi.org/10.1007/s00216-020-03128-z 2021 Method Development
Rapid visualization of lipopeptides and potential bioactive groups of compounds by combining ion mobility and MALDI imaging mass spectrometry McCann, A.; Kune, C.; La Rocca, R. et al. Drug Discovery Today: Technologies, 39, 81-88 https://doi.org/10.1016/j.ddtec.2021.08.003 2021 Chemistry – Basic Research
Protocol for multimodal analysis of human kidney tissue by imaging mass spectrometry and CODEX multiplexed immunofluorescence Neumann, E. K.; Patterson, N. H.; Allen, J. L. et al. STAR Protocols, 2(3), 100747 https://doi.org/10.1016/j.xpro.2021.100747 2021 Protocol
Mass Spectrometry Imaging of Low-Molecular-Weight Phenols Liberated from Plastics Xu, Q.; Tian, R.; Lu, C. et al. Analytical Chemistry, 93(40), 13703-13710 https://pubs.acs.org/doi/10.1021/acs.analchem.1c03397 2021 Chemistry – Basic Research
Evaluation of Therapeutic Collagen-Based Biomaterials in the Infarcted Mouse Heart by Extracellular Matrix Targeted MALDI Imaging Mass Spectrometry Clift, C. L.; McLaughlin, S.; Muñoz, M. et al. Journal of The American Society for Mass Spectrometry 32 (12), 2746-2754 https://pubs.acs.org/doi/10.1021/jasms.1c00189 2021 Biology - Clinical
Detection and mapping of haemoglobin variants in blood fingermarks by MALDI MS for suspect “profiling”. Heaton, C.; Witt, M.; Cole, L. et al. Analyst, 146, 4290 https://doi.org/10.1039/d1an00578b 2021 Chemistry – Basic Research
Complementing Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry Imaging with Chromatography Data for Improved Assignment of Isobaric and Isomeric Phospholipids Utilizing Trapped Ion Mobility-Mass Spectrometry Helmer, P. O.; Nordhorn, I. D.; Korf, A. et al. Analytical Chemistry, 93, 2135-2143 https://doi.org/10.1021/acs.analchem.0c03942 2021 Chemistry – Basic Research
Automated Biomarker Candidate Discovery in Imaging Mass Spectrometry Data Through Spatially Localized Shapley Additive Explanations Tideman, L. E. M.; Migas, L. G.; Djambazova, K. V. et al. Analytica Chimica Acta, 1177, 338522 https://doi.org/10.1016/j.aca.2021.338522 2021 Chemistry – Basic Research
Absolute quantification of 2-hydroxyglutarate on tissue by matrix-assisted laser desorption/ionization mass spectrometry imaging for rapid and precise identification of isocitrate dehydrogenase mutations in human glioma Chunyan, L.; Hainan, L.; Lei, W. et al. Rumeng Zhang, Xiaoai Yuan, Taihua Wu, Jie Wu, Ming Lu, Xu Ma Int. J. Cancer., 149, 12, 2091-2098 https://doi.org/10.1002/ijc.33729 2021 Biology - Clinical
Traumatic brain injury induces region-specific glutamate metabolism changes as measured by multiple mass spectrometry methods Sowers, J. L.; Sowers, M. L.; Shavkunov, A. S. et al. iScience 24(10), 103108 https://doi.org/10.1016/j.isci.2021.103108 2021 Biology - Clinical
Preserved and variable spatial-chemical changes of lipids across tomato leaves in response to central vein wounding reveals potential origin of linolenic acid in signal transduction cascade. Veličković, D.; Chu, R. K.; Henkel. C. et al. Journal of Plant-Environment Interactions 2(1), 28-35 https://doi.org/10.1002/pei3.10038 2021 Biology
Multiplexed imaging mass spectrometry of the extracellular matrix using serial enzyme digests from formalin-fixed paraffin-embedded tissue sections Clift, C. L.; Drake, R. R.; Mehta, A. et al. Analytical and Bioanalytical Chemistry, 413, 2709-2719 https://doi.org/10.1007/s00216-020-03047-z 2021 Biology
Imaging Mass Spectrometry and Lectin Analysis of N-linked Glycans in Carbohydrate Antigen Defined Pancreatic Cancer Tissues McDowell, C. T.; Klamer, Z.; Hall, J. et al. Molecular & Cellular Proteomics 20, 100012 https://doi.org/10.1074/mcp.RA120.002256 2021 Biology - Clinical
Direct N-Glycosylation Profiling of Urine and Prostatic Fluid Glycoproteins and Extracellular Vesicles Blaschke, C. R. K.; Hartig, J. P.; Grimsley, G. et al. Frontiers in Chemistry 9, 734280 https://www.frontiersin.org/articles/10.3389/fchem.2021.734280/full 2021 Biology
CRL4AMBRA1 is a master regulator of D-type cyclins. Simoneschi, D.; Rona, G.; Zhou, N. et al. Nature, 592, 789-793 https://doi.org/10.1038/s41586-021-03445-y 2021 Biology - Clinical
Complete spatial characterisation of N-glycosylation upon striatal neuroinflammation in the rodent brain. Rebelo, A. L.; Gubinelli, F.; Roost, P. et al. Journal of Neuroinflammation, 18, 116 https://doi.org/10.1186/s12974-021-02163-6 2021 Biology
Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH Dudek, M.; Pfister, D.; Donakonda, S. et al. Nature, 592, 444-449 https://doi.org/10.1038/s41586-021-03233-8 2021 Biology - Clinical
β‑Cyclodextrin-poly (β-Amino Ester) Nanoparticles Are a Generalizable Strategy for High Loading and Sustained Release of HDAC Inhibitors Chaudhuri, S.; Fowler, M. J.; Baker, C. et al. Applied Materials & Interface, 13, 20960-20973 https://doi.org/10.1021/acsami.0c22587 2021 Biology - Clinical
Rapid N-Glycan Profiling of Serum and Plasma by a Novel Slide-Based Imaging Mass Spectrometry Workflow Blaschke, C. R. K.; Black, A. P.; Mehta, A. S. et al. Journal of the American Society for Mass Spectrometry, 31, 2511-2520 https://doi.org/10.1021/jasms.0c00213 2020 Chemistry – Basic Research
MS Imaging‐Guided Microproteomics for Spatial Omics on a Single Instrument Dewez, F.; Oetjen, J.; Henkel, C. et al. Proteomics, 20, 23, 1900369 https://doi.org/10.1002/pmic.201900369 2020 Chemistry – Basic Research
Spatial Metabolomics of the Human Kidney using MALDI Trapped Ion Mobility Imaging Mass Spectrometry. Neumann, E. K.;Migas, L. G.; Allen, J. L. et al. Analytical Chemistry 92(19), 13084-13091 https://doi.org/10.1021/acs.analchem.0c02051 2020 Biology
Resolving the Complexity of Spatial Lipidomics Using MALDI TIMS Imaging Mass Spectrometry Djambazova, K. V.; Klein, D. R.; Migas, L. G. et al. Analytical Chemistry, 92(19), 13290-13297 https://doi.org/10.1021/acs.analchem.0c02520 2020 Biology
Morphometric Cell Classification for Single-Cell MALDI-Mass Spectrometry Imaging Ščupáková,, K.; Dewez, F.; Walch, A. K. et al. Angewandte Chemie International Edition 59(40), 17447-17450 https://doi.org/10.1002/anie.202007315 2020 Biology - Clinical
Modulating Isoprenoid Biosynthesis Increases Lipooligosaccharides and Restores Acinetobacter baumannii Resistance to Host and Antibiotic Stress Palmer, L. D.; Minor, K. E.; Mettlach, J. A. et al. Cell Reports, 32(10), 108129 https://doi.org/10.1016/j.celrep.2020.108129 2020 Biology - Clinical
Mass‐Spectrometric Imaging of Electrode Surfaces—a View on Electrochemical Side Reactions Fangmeyer, J.; Behrens, A.; Gleede, B. et al. Angewandte Chemie, 132(46), 20608-20613 https://doi.org/10.1002/ange.202010134 2020 Chemistry – Basic Research
Lipidomic profiling of clinical prostate cancer reveals targetable alterations in membrane lipid composition Butler, L. M.; Mah, C. Y.; Machiels, J. et al. Cancer Research,81, 19, 4981-4993 https://doi.org/10.1158/0008-5472.CAN-20-3863 2020 Biology - Clinical
In situ isobaric lipid mapping by MALDI–ion mobility separation–mass spectrometry imaging Fu, T.; Oetjen, J.; Chapelle, M. et al. Journal of Mass Spectrometry 55(9), e4531 https://doi.org/10.1002/jms.4531 2020 Biology
Hydroperoxylated vs Dihydroxylated Lipids: Differentiation of Isomeric Cardiolipin Oxidation Products by Multidimensional Separation Techniques Helmer, P.O.; Behrens, A.; Rudt, E. et al. Analytical Chemistry 92(17), 12010-12016 https://doi.org/10.1021/acs.analchem.0c02605 2020 Biology
High-Performance Molecular Imaging with MALDI Trapped Ion-Mobility Time-of-Flight (timsTOF) Mass Spectrometry Spraggins, J. M.; Djambazova, K. V.; Rivera, E. S. et al. Analytical Chemistry 91(22), 14552-14560 https://doi.org/10.1021/acs.analchem.9b03612 2019 Chemistry – Basic Research
Detection of small molecule concentration gradients in ocular tissues and humours Boughton, B.A.; Thomas, O. R. B.; Demarais, N. J. et al. Journal of Mass Spectrometry 55(4), e4460 https://doi.org/10.1002/jms.4460 2019 Biology

timsTOF fleX MALDI-2

TITLE AUTHOR PUBLICATION LINK YEAR APPLICATION
msiFlow: automated workflows for reproducible and scalable multimodal mass spectrometry imaging and microscopy data analysis Spangenberg, P.; Bessler, S.; Widera, L. et al. Nature Communications, 16, 1, 1065 https://doi.org/10.1038/s41467-024-55306-7 2025
Microscopy and spatial-metabolomics identify tissue-specific metabolic pathways uncovering salinity and drought tolerance mechanisms in Avicennia marina and Phoenix dactylifera roots Oyarce, P.; Xiao, T. T.; Henkel, C. et al. Scientific Reports, 15, 1, 1076 https://doi.org/10.1038/s41598-025-85416-1 2025
MALDI-2 Mass Spectrometry Imaging enables spatial visualization of endocannabinoids in brain Salviati, E.; Guida, F.; La Gioia, D. et al. Talanta, 127811, in press https://doi.org/10.1016/j.talanta.2025.127811 2024
MALDI and MALDI-2 mass spectrometry imaging contribute to revealing the alternations in lipid metabolism in germinating soybean seeds Xie, P.; Chen, J.; Xia, Y. et al. Chinese Chemical Letters, 110595, in press https://doi.org/10.1016/j.cclet.2024.110595 2024
Optimized MALDI2-Mass Spectrometry Imaging for Stable Isotope Tracing of Tissue-Specific Metabolic Pathways in Mice Chen, Y.; Song, Y.; Yang, Z. et al. Analytical Chemistry, 97, 1, 499-507 https://doi.org/10.1021/acs.analchem.4c04600 2024
Experimental and Computational Evaluation of Lipidomic In-Source Fragmentation as a Result of Postionization with Matrix-Assisted Laser Desorption/Ionization Vandergrift, G. W.; Kew, W.; Andersen, A. et al. Anal Chem. 2024, 96, 41, 16127-16133 https://doi.org/10.1021/acs.analchem.4c00258 2024
Cell type specific regulation of phenolic acid and flavonoid metabolism in Taxus mairei leaves Zhan, X.; Liang, X.; Lin, W. et al. Industrial Crops and Products, 219, 118975 https://doi.org/10.1016/j.indcrop.2024.118975 2024
Mapping Spatiotemporal Heterogeneity in Multifocal Breast Tumor Progression by Noninvasive Ultrasound Elastography-Guided Mass Spectrometry Imaging Strategy Zhou, P.; Xiao, Y.; Zhou, X. et al. JACS Au, 4, 2, 465 https://doi.org/10.1021/jacsau.3c00589 2024
Recent strategies for improving MALDI mass spectrometry imaging performance towards low molecular weight compounds Sun, Z.; Wang, F.; Liu, Y. et al. TrAC Trends in Analytical Chemistry, 117727 https://doi.org/10.1016/j.trac.2024.117727 2024
Mass Spectrometry Imaging and Histology for the Analysis of Budding Intestinal Organoids Sekera, E. R.; Akkaya-Colak, K. B.; Lopez, A. et al. Analytical Chemistry, 96, 10, 4251 https://doi.org/10.1021/acs.analchem.3c05725 2024
Large-Scale Screening of Pharmaceutical Compounds to Explore the Application Space of On-Tissue MALDI and MALDI-2 Mass Spectrometry Soltwisch, J.; Palmer, A.; Hong, H. et al. Analytical Chemistry, 96, 25, 10294 https://doi.org/10.1021/acs.analchem.4c01088 2024
MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids Chen, J.; Xie, P.; Wu, P. et al. Chinese Chemical Letters, 35, 4, 108895 https://doi.org/10.1016/j.cclet.2023.108895 2024
De novo phytosterol synthesis in animals Michellod, D.; Bien, T.; Birgel, D. et al. Science, 380, 6644, 520-526 https://doi.org/10.1126/science.add7830 2023
Spatial lipidomics and metabolomics of multicellular tumor spheroids using MALDI-2 and trapped ion mobility imaging Chen, J.; Xie, P.; Dai, Q. et al. Talanta, 265, 124795 https://doi.org/10.1016/j.talanta.2023.124795 2023
Spatial Metabolomics and Lipidomics Reveal the Mechanisms of the Enhanced Growth of Breast Cancer Cell Spheroids Exposed to Triclosan Chen, Jing; Xie, Peisi; Wu, Pengfei; Lin, Zian; He, Yu; Cai, Zongwei Environmental Science and Technology 6, 1, 509 https://doi.org/10.1021/acs.est.3c01746 2023 Biology - Clinical
Mass spectrometry imaging and single-cell transcriptional profiling reveal the tissue-specific regulation of bioactive ingredient biosynthesis in Taxus leaves Zhan, Xiaori; Qiu, Tian; Zhang, Hongshan; Hou, Kailin; Liang, Xueshuang; Chen, Cheng; Wang, Zhijing; Wu, Qicong; Wang, Xiaojia; Li, Xiao-Lin; Wang, Mingshuang; Feng, Shangguo; Zeng, Houqing; Yu, Chunna; Wang, Huizhong; Shen, Chenjia Plant Communications 9, 1, eade8898 https://doi.org/10.1016/j.xplc.2023.100630 2023 Biology
Negative Ion-Mode N-Glycan Mass Spectrometry Imaging by MALDI-2-TOF-MS Soltwisch, Jens; Heijs, Bram Methods in Molecular Biology, 173-186 https://doi.org/10.1007/978-1-0716-3319-9_15 2023 Protocol
Cryo-ultramicrotomy and Mass Spectrometry Imaging Analysis of Nudibranch Microstructures Hamilton, B.R.; Chan, W.; Cheney, K. L.; Sullivan, R.K.P.; Floetenmeyer, M.; Garson, M. J.; Wepf, R. J. Am. Soc. Mass Spectrom., 33, 3, 592–597 https://doi.org/10.1021/jasms.1c00254 2022 Biology
Three-Dimensional Mass Spectrometry Imaging Reveals Distributions of Lipids and the Drug Metabolite Associated with the Enhanced Growth of Colon Cancer Cell Spheroids Treated with Triclosan Xie, P., Zhang, H., Wu, P. et. al. Analytical Chemistry, 94(40), 13667-13675 https://doi.org/10.1021/acs.analchem.2c00768 2022 Biology - Clinical
Spatial Distribution of Isobaric Androgens in Target Tissues Using Chemical Derivatization and MALDI-2 on a Trapped Ion Mobility Quadrupole Time-of-Flight Instrument Mackay, C. L.; Soltwisch, J.; Heijs, B.; Smith, K. W.; Cruickshank, F. L.; Nyhuis, A.; Dreisewerd, K.; Cobice, D. RSC Advances, 11,33916-33925 https://doi.org/10.1039/d1ra06086d 2021 Biology - Clinical
Spatial differentiation of metabolism in prostate cancer tissue by MALDI-TOF MSI Andersen, M. K.; Høiem, T. S.; Claes, B. S. R. et al. Cancer & Metabolism 9, Article number: 9 https://doi.org/10.1186/s40170-021-00242-z 2021 Biology - Clinical
Molecular insights into symbiosis — mapping sterols in a marine flatworm-algae-system using high spatial resolution MALDI-2-MS imaging with ion mobility separation Bien, T; Hambleton, E. A; Dreisewerd, K. et al. Analytical and Bioanalytical Chemistry 413, 2767-2777 https://doi.org/10.1007/s00216-020-03070-0 2021 Biology
MALDI-2 on a Trapped Ion Mobility Quadrupole Time-of-Flight Instrument for Rapid Mass Spectrometry Imaging and Ion Mobility Separation of Complex Lipid Profiles Soltwisch, J.; Heijs, B.; Koch, A. et. al Analytical Chemistry, 92, 8697-8703 https://doi.org/10.1021/acs.analchem.0c01747 2020 Chemistry – Basic Research
MALDI‑2 for the Enhanced Analysis of N‑Linked Glycans by Mass Spectrometry Imaging Heijs, B.; Potthoff, A.; Soltwisch, J. et al. Analytical Chemistry, 92, 13904-13911 https://doi.org/10.1021/acs.analchem.0c02732 2020 Chemistry – Basic Research

 

For Research Use Only. Not for use in clinical diagnostic procedures.