纳米红外光谱仪

Dimension IconIR300 纳米红外光谱仪

300 mm样品测试范围,半导体研发、失效分析和纳米污染物识别的强有力工具

Dimension IconIR300

Dimension IconIR300™大样品纳米红外系统为半导体应用提供高速、高精度的纳米级表征,具有优秀的测量能力、样品尺寸和材料类型灵活性。通过其专利的光热红外光谱技术和纳米级原子力显微镜(AFM)性质成像能力的结合,IconIR300 能够实现自动化晶圆检测和缺陷识别,适用于最广泛的晶圆和光掩模样品测量。该系统显著扩展了AFM-IR技术在半导体行业的应用范围,超越了传统技术所能达到的领域。

IconIR300建立在Dimension IconIR系统开创性大样品架构之上,提供相关显微镜和化学成像,与传统技术相比增强了空间分辨率和灵敏度。可与自动化晶圆处理和先进的数据收集/分析软件集成,该系统可节省时间和成本,提高生产效率。

To learn more, continue reading, contact us, or see FAQs about this product.

全晶圆
纳米级化学和材料属性表征
结合红外光谱学和AFM性质成像,实现200 mm和300 mm晶圆高精度、无损测量。
绝不含糊
识别有机/无机纳米污染物
利用与FTIR库关联的AFM-IR光谱数据分析,提高半导体晶圆和光掩模的质量。
自动化
程式化测量
提供用户友好的全面数据访问和KLARF文件支持。

半导体行业的超凡纳米红外光谱和化学成像

On仅Dimension IconIR300系统提供:

  • Whole-wafer, non-destructive measurement of 200 mm and 300 mm wafers;

200mm和300 mm晶圆进行全面、无损测量

  • Unambiguous identification of organic and inorganic nano-contaminants on semiconductor wafers and photomasks with data directly correlating to FTIR libraries;
    识别半导体晶圆和光掩模上的有机和无机纳米污染物,数据直接与FTIR库相关联分析
  • Non-destructive step-height measurement and nanoscale material property mapping; and

无损台阶高度测量和纳米级材料性质成像;以及

  • Automated, recipe-based measurements and KLARF file support for user-friendly access to comprehensive data.

自动化、程式化测量和KLARF文件支持,方便用户访问全部数据。

200mm和300 mm晶圆的全面测量

配置布鲁克专利、独特的AFM-IR模式和专有的PeakForce Tapping®性质成像模式,结合IconIR300的大样品架构,为最广泛的半导体应用提供大的样品灵活性。IconIR300提供直径高达300 mm样品的全面测量,包括各种厚度和材料类型的样品,例如:

  • 有机和无机样品
  • 图案化的晶圆
  • 裸晶圆
  • 光掩模
  • 数据存储介质晶圆
Dimension IconIR300系统对300mm晶圆缺陷检测时的内部视图

Push-Button AFM and AFM-IR Imaging Automation

Nanocontaminant analysis enabled by KLARF navigation. (a) Topography (2x2 μm scan) and (b) composite IR map combining IR absorption at different wavenumbers corresponding to five different materials showing contaminant distribution, and (c) corresponding AFM-IR spectra in selected contaminants.

Bruker’s AutoMET software on Dimension IconIR systems provides the only AFM-IR measurement automation capability on the market. It supports recipe-driven, push-button nanoscale chemical imaging, AFM imaging, and KLARF-based navigation. IR spectroscopy steps can also be inserted into automated imaging recipes.

AutoMET recipes allow the user to:

  1. Choose sites of interest
  2. Define measurements per site
  3. Set analyses per measurement 

This level of automation is essential for routine industrial applications, from semiconductors to pharmaceuticals and polymers. Key benefits include:

  • Increased throughput without repetitive manual imaging setup
  • Consistent data acquisition from operators of any experience level
  • Customizability for a large breadth of materials and analysis needs

半导体应用的高性能纳米级红外光谱

在PS-LDPE聚合物混合物的不同位置收集的高质量共振增强AFM-IR光谱,展示了纳米红外光谱对材料的高化学灵敏度和对纳米级材料性质的深入洞察

AFM-IR是纳米红外领域的首选技术,Bruker是光热AFM-IR纳米红外光谱技术的创新者。

Dimension IconIR300提供:

  • 高精度、丰富、详细的纳米光谱,与FT-IR光谱一致,实现纳米级薄污染物测量;
  • 支持各种样品的多种高级测量和操作模式,适用于工业和学术用户;
  • 半导体应用中领先的高性能AFM-IR光谱技术;以及
  • 用于聚合物薄膜的可靠表面灵敏化学测量

晶圆和光掩模上的高分辨率化学成像

Dimension IconIR300基于行业领先的AFM性能和Bruker专利的Tapping AFM-IR成像技术,提高了纳米红外技术的空间分辨率和样品尺寸的适用范围。

Dimension IconIR300提供:

  • 优于10 nm空间分辨率的化学成像,用于各种样品类型的化学成像,包括有机和无机污染物;
  • 提供一致、可靠、高质量的数据;以及
  • 独特的AFM-IR技术,用于消除全部机械伪影,确保只收集真正的化学成分信息。
在Tapping AFM-IR模式下,PS-b-PMMA嵌段共聚物的高分辨率化学成像。样品形貌(a);1730 cm-1 (b)和1492 cm-1 (c)处的纳米红外成像,分别显示PMMA和PS。 (b)中的黄箭头表示化学分辨率<10 nm。叠加图像(d)显示各组分分布。

高度自动化的纳米污染物识别

关键自动化能力包括:

·         台阶高度测量以及纳米级材料性质成像

·         光学和AFM图像的图案化识别

·         探针位置校正

·         支持全晶圆或网格成像

·         图像定位精度在几十纳米以内

·         复杂、简单的程式化编写;以及

·         KLARF文件导入能力,支持纳米红外自动化测量

这些能力,结合具有高分辨率红外光谱的纳米级化学表征,使学术和工业用户能够克服传统半导体材料缺陷识别的限制。

裸硅晶圆上污染物的高度图像(a)和光热AFM-IR光谱(b)。FTIR库中的匹配结果显示污染物识别为聚对苯二甲酸乙二醇酯。
Dimension IconIR300 FAQs

Frequently Asked Questions

Is Dimension IconIR300 suitable for 200 mm and 300 mm wafer analysis?

Yes, this system is purpose-built for photothermal AFM-IR and property mapping on 200 mm and 300 mm wafers. It supports recipe automation and defect mapping for semiconductor workflows.

Can Dimension IconIR300 identify nano-contaminants and match them to FTIR libraries?

IconIR300 can detect and chemically identify both organic and inorganic nano-contaminants on wafers and photomasks. Its AFM-IR spectra can be directly correlated with FTIR reference libraries.

Are there automation capabilities available on Dimension IconIR300?

Yes. Dimension IconIR300 supports Bruker’s AutoMET® software and KLARF-based navigation. This enables user-defined automated nanoscale measurements at user-defined locations on wafers, grids, or arrays of multiple samples. IR spectroscopy steps can also be inserted into automated imaging recipes.

How are automated recipes created with AutoMET on Dimension IconIR300?

AutoMET® recipes allow the user to choose sites, then define measurements per site and analyses per measurement. This capability is essential for routine industrial applications, from semiconductors to pharmaceuticals and polymers.

More About Bruker's Nanoscale Infrared Technology

Can the spectra from Bruker’s photothermal AFM-IR systems be interpreted in the same way as FTIR spectra?

Yes. Bruker’s photothermal AFM-IR technology produces spectra that are directly comparable to FTIR spectra, as demonstrated in published documentation and peer-reviewed articles. AFM-IR spectra can be searched directly against FTIR spectral databases. If FTIR-like spectral analysis is critical for your application, our experts can provide evidence showing spectral correlation.

How does photothermal AFM-IR compare with Raman-AFM or s-SNOM?

Photothermal AFM-IR provides direct absorption-based spectra that closely match FTIR results and are easier to interpret than Raman-AFM or s-SNOM. Further, Photothermal AFM-IR signals are amplified by the resonant enhancement of the cantilever providing the best signal-to-noise of those techniques. Bruker offers s-SNOM as a separate option for advanced near-field studies.

What spatial resolution and sensitivity can I expect from Bruker’s photothermal AFM-IR systems?

Bruker nanoIR systems routinely achieve chemical imaging with spatial resolution below 10 nm and can detect single molecular layers. Actual performance depends on your sample and selected measurement mode.

Can photothermal AFM-IR systems identify nanoplastics or other sub-micron particles?

Yes, photothermal AFM-IR can chemically map and identify particles smaller than one micron, including nanoplastics and environmental contaminants. Direct correlation to FTIR provides ready interpretation in particles as small as 10 nm. 

What utilities and site requirements should I consider when planning for installation of a photothermal AFM-IR system?

Bruker’s photothermal AFM-IR systems typically require a single socket of standard electrical power,and CDA. Specific requirements may vary by model, so request a site preparation guide from your Bruker representative.

What laser options and spectral coverage are available on Bruker’s photothermal AFM-IR systems?

Bruker photothermal AFM-IR systems primarily use quantum cascade lasers (QCLs) that deliver stable, reliable performance and broad coverage across the mid-infrared fingerprint region as well as optical parametric oscillators (OPOs) for the C-H, O-H, N-H stretching region. Multiple QCL chips can be combined to access all key spectral windows required for routine and advanced research, and additional sources are available for specialized applications. Bruker’s application experts can help you select the optimal laser configuration to match your measurement needs and ensure sufficient spectral resolution for both standard and demanding experiments.

How long do typical measurements take for spectra, chemical mapping, and automated recipes?

Measurement times vary by application, but point spectra can be acquired in seconds, chemical maps in minutes, and automated recipes can be tailored for high-throughput workflows.

What is the recommended maintenance schedule for Bruker nanoIR systems?

Routine maintenance includes probe replacement, laser alignment checks, and calibration with reference samples. Bruker provides detailed maintenance protocols and support plans.

Contact Us

Input value is invalid.

* Please fill out the mandatory fields.

Please enter your first name
Please enter your last name
Please enter your e-mail address
Please enter your Company/Institution

     

Please enter a valid phone number

ⓘ Used to provide a faster response to your request/question.

Please enter a valid phone number

ⓘ Used to provide a faster response to your request/question.

Please enter a valid phone number

ⓘ Used to provide a faster response to your request/question.

Please enter a valid phone number

ⓘ Used to provide a faster response to your request/question.

Please add me to your email subscription list so I can receive webinar invitations, product announcements and events near me.
Please accept the Terms and Conditions

             Privacy Notice   Terms of Use