Bruker has been helping biologists discover, understand, publish and advance their knowledge of biological systems ever since our introduction of TappingMode™ expanded AFM use into life sciences research. Utilizing proprietary AFM features specifically designed for life sciences research, only Bruker’s Bio AFMs deliver the highest quality results for quantitative live-cell mechanical property mapping, highest resolution molecular and cellular imaging, and fast scanning of dynamic biological processes, as well as seamless integration of AFM with advanced optical microscopy techniques.
BioAFM is an increasingly important tool in biological and biomedical studies due to its very high resolution and the possibility of conducting experiments with live cells under physiologically relevant and ambient conditions, even in liquid. BioAFM also provides nanometer-resolution surface mapping for many mechanical and electrical properties, such as elasticity, stiffness, conductivity and surface potential. Bruker BioAFM technology is enabling life science researchers to investigate how these properties impact on cellular functions, including communication, signaling, cell division and differentiation, and even tumor metastasis and infection.
A BioAFM is an atomic force microscope specifically adapted for studying biological samples and soft matter. BioAFM instruments can measure soft, fragile, and challenging samples — including single molecules, nucleic acids, bacteria, living cells, and tissues — under near-physiological conditions without damaging their structures. These instruments are uniquely capable of performing non-invasive measurements on biological samples and label-free measurements in liquid.
BioAFMs have specialized sample and cantilever holders, stages, and measurement modes specifically designed for life science samples and experiments. Bruker BioAFM instruments also can be uniquely configured with a large selection of optional accessories and advanced modes, extending sample compatibility and measurement capabilities to include even the most challenging soft matter and biological samples.
Unique features and capabilities of Bruker BioAFM instruments include:
Atomic force microscopy provides 3D images of surface features and topography. BioAFMs extend and enhance the technique, optimizing it to address the unique needs and challenges of biological research and providing distinct advantages over other methods. Key advantages include:
Bruker BioAFMs feature several specialized software functions and capabilities designed to support high-performance AFM-based investigation of biological samples and soft matter. Automated instrument procedures (e.g., alignment, operation, calibration), measurement routines, and data analysis capabilities make it easier to set up and run experiments while also improving the accuracy and reproducibility of results.
Advanced automation features include:
These features extend and enhance the capabilities of Bruker BioAFM systems in order to:
The improved throughput, standardized batch analysis routines, and statistically relevant datasets generated by these types of automated features are essential in biological research, particularly in nanomedical and clinical fields.
A major advantage of Bruker’s BioAFM instrumentation is that they can be easily combined with advanced optical microscopy techniques, e.g., fluorescence or STED microscopy, for correlated measurements and complementary datasets.
Our BioAFMs can be easily combined with advanced optical imaging techniques by using a specific AFM stage that is compatible with most commercially available inverse and confocal optical microscopes. The AFM head is placed on the stage and software, such as Bruker’s DirectOverlay feature, enables colocalization of the optical and AFM images and direct correlation of the AFM and optical data. Transferring the sample between setups is not necessary and a wide range of camera and detector types are supported. Easy optical image import, advanced calibration algorithms, and visualization routines facilitate accurate navigation on and around the sample, providing multidimensional sample characterization in a single experiment. Compatible techniques include epifluorescence, confocal, phase contrast, and super-resolution microscopy techniques (STED, TIRF, STORM).
The ability to obtain real-time, correlative data sets is particularly relevant in life science research because it:
RELATED LINKS:
No, you do not need an optical/upright microscope for BioAFM-based experiments; a BioAFM instrument can operate independently of any other microscope system.
BioAFM allows the study of:
RELATED LINKS:
Bruker BioAFMs achieve industry-leading precision and repeatability in the above-listed applications and support advanced and cutting-edge research in cancer research, polymer research, biomaterials for use in medical implants and tissue regeneration, and microbial interface biology. Further examples include:
The most common applications of BioAFMs are nanoscale structural analysis and biomechanical characterization. These provide valuable insights into molecular, single-cell, and cellular mechanisms and functionality. Atomic force microscopy enables the high-resolution imaging and precise measurement of the nanoscale forces necessary for these types of investigation, making it an essential tool for:
RELATED LINKS:
BioAFM instruments can measure soft, fragile, and challenging samples ranging from single molecules, nucleic acids, and proteins to viruses, bacteria, living cells, and tissues. Soft matter — such as hydrogels, spheroids, organoids, and biomaterials — can also be studied in a non-invasive manner using a BioAFM.
Bruker BioAFMs can be equipped with a wide variety of accessories to facilitate the investigation of samples of varying size and composition, on a wide range of substrates, and under ambient, extreme, and/or aggressive environmental conditions.
A BioAFM can measure nanoscale mechanical properties (e.g., stiffness, elasticity, adhesion, Young’s modulus, dissipation, and deformation), particle size, surface structure, and morphology.
These properties can be investigated in samples as diverse as single molecules, live cells, tissues, proteins, and bacteria, as well as in soft matter samples, such as polymers and hydrogels.
BioAFM is a label-free method. Measurements can be performed in air or liquid, enabling the investigation of live cells under near-physiological conditions; it does not require a vacuum and it is not necessary to freeze, dry, coat, or microtome cut samples before measurement.
In general, the sample must adhere to a surface substrate (e.g., a Petri dish, coverslip, or mica), or, if measuring in liquid, be immersed in a suitable buffer solution.
It is recommended that the substrate is thoroughly cleaned before measurement to remove any contaminants or artifacts that might interfere with imaging.
Contact our BioAFM experts to discuss your specific sample and measurement requirements.
Bruker has deep experience and expertise supporting life science and biophysics research in the fields of cell mechanics and adhesion, mechanobiology, cell-cell and cell-surface interactions, cell dynamics, and cell morphology.
We are eager to share this knowledge with the larger research community. Be sure to explore our extensive offering of BioAFM resources, below.
Contact us to discuss your specific application requirements and measurement needs with a BioAFM expert.
당사의 웨비나는 모범 사례를 다루고, 신제품을 소개하고, 까다로운 질문에 대한 빠른 솔루션을 제공하고, 새로운 애플리케이션, 모드 또는 기술에 대한 아이디어를 제공합니다.
Bruker partners with our customers to solve real-world application issues. We develop next-generation technologies and help customers select the right system and accessories. This partnership continues through training and extended service, long after the tools are sold.
Our highly trained team of support engineers, application scientists and subject-matter experts are wholly dedicated to maximizing your productivity with system service and upgrades, as well as application support and training.