Analisadores de Microscópio Eletrônico

QUANTAX EDS para TEM

Espectrômetro de raios X dispersivos de energia para STEM, TEM e T-SEM

Mapeamento de Elementos em Nanoescala

Mapeamento de Elemento Quantitativo

Destaques

80
keV
Unprecedented upper energy limit
Unequivocally identify and quantify all present elements
3
TEM-quantification models
Succeed in TEM, STEM and T-SEM with easy-to-use powerful quantification based on theoretical and experimental Cliff-Lorimer factors, as well as Zeta-factor interpolation
1
Å
Stable resolution
Map periodic structures (atom, layers) with high stability and using enhanced drift correction features

Element Analysis in Transmission Electron Microscopy on the Nanometer Scale

Flexible and easy-to-use analysis software package ESPRIT with an open user interface: you see what you do.

Off-line analysis option with individual or LAN access for student or laboratory networks.

Sophisticated most seasoned quantitative energy dispersive X-ray spectroscopy (EDS) for complete data mining includes: 

  • Options for quantification steps: default suggestions for easy use, indvidual setup, detailed modification and saving/reloading of recipes
  • 3 different quantification approaches are covering all possible scenarios based on theoretical and experimental Cliff-Lorimer factors as well as Zeta-factors and the interpolation of missing Zeta-factors
  • TEM-specific high energy element lines above 40 keV available for quantification ensuring unambiguous results
  • Choice of 3 vital background models: a physical one for bulk and a physical one for thin lamellae as well as a mathematical model
  • Absorption correction included in the Cliff-Lorimer quantification already
>15
anos
Experiência com detectores de desvio de silício em TEM
Os materiais do detector e a eletrônica de acionamento são projetados para aquisição de dados rápida, precisa e confiável e sem interferência com o desempenho de TEM de ponta, mesmo em resolução atômica.
80
keV
Limite de energia superior sem precedentes para identificação e quantificação do elemento
Com elétrons de alta energia específicos para TEM e, portanto, linhas de elementos de alta energia para EDS quantitativo
1
átomo
ID de átomo único e mapeamento de coluna de átomos
Identificação de átomo único em segundos usando os detectores XFlash 6T de alto ângulo sólido em combinação com STEM de alta qualidade e alto brilho com correção de aberração FEG fria

Mapeamento de elementos EDS em TEM, STEM e SEM (T-SEM) na escala nanométrica

A configuração de medição versátil e clara e a geometria slimline garantem dados TEM EDS rápidos e confiáveis ​​em uma base rotineira. As imagens hiperespectrais são adquiridas usando os chamados HyperMaps ou Imagens Espectrais. Os espectros por pixel e todos os metadados necessários para uma análise quantitativa correta são salvos para inspeção e processamento.

  • O design de linhas finas e a otimização geométrica para cada tipo de pólo do microscópio garantem o máximo de coleta e ângulo de decolagem.
  • Ajuda a evitar a inclinação da amostra, absorção, sombreamento e picos do sistema.
  • Detectores sem janelas para aumentar ainda mais a eficiência de detecção, particularmente na região de baixa energia para linhas K de elementos leves e L-, M- e outras linhas de elementos Z mais altos.
  • A retração automática por padrão e a personalização garantem uma longa vida útil do detector e experimentos versáteis.
  • Monitoramento automático de experimentos in situ e in-operando, como aquecimento de materiais, onde as alterações químicas são registradas em tempo real.
  • Conjunto de software abrangente ESPRIT para análise de dados on-line e off-line.

Benefícios

High-resolution Element Distribution Analysis of Electron Transparent Samples in TEM, STEM and SEM (T-SEM)

  • Long standing expertise in EDS ensures the configuration of the best solution for your specific microscope (STEM, TEM or SEM) thanks to slim-line detector design and geometrical optimization for each microscope pole piece and EDS flange type
  • Maximum collection and take-off angle allow fast and highly sensitive data acquisition
  • Fast-moving stable detector stage
  • A special drift correction routine for periodic features ensures successful EDS on the nanoscale
  • Time resolved data acquisition for in-situ experiments suitable for saving a stream of changing data, f.e. at elevated temperatures
  • Automation of data acquisition and analysis processes using the scripting and API options for generation of specific analysis jobs and batch processing
  • Clean data needing no or minimal post-acquisition corrections due to avoiding mechanical and electromagnetic interference completely and avoiding or keeping to a minimum specimen tilt, absorption, shadowing and system peaks
  • Most seasoned quantification for EDS data from electron transparent specimens on the market provides thorough data mining with unambiguous results
  • Highest quality assistance and training due to long standing experience in TEM for using your system to its full power

Software para TEM EDS On e Off-line

O QUANTAX EDS para TEM inclui um pacote de software de análise flexível e transparente ESPRIT. Os métodos padrão e ajustáveis ​​permitem a mineração de dados rápida e abrangente de mapeamentos de elementos, os chamados HyperMaps ou imagens de espectro e a geração de mapas quantitativos de elementos. Rotinas de quantificação baseadas em padrões e sem padrão para espectros, objetos, varreduras de linha e mapeamento de elementos estão incluídas, bem como análise de fase baseada em PCA e análise estatística automatizada de partículas.

  • Software de análise off-line com chave de hardware pessoal e/ou opção de LAN para redes de alunos ou laboratórios.
  • Interface de usuário transparente aberta: o que você vê é o que você obtém.
  • Configuração clara, modificação e salvar/recarregar rotinas de quantificação para dados EDS.
  • Dois métodos de quantificação para amostras transparentes de elétrons: Método Cliff-Lorimer e Zeta-Factor.
  • Fatores teóricos de Cliff-Lorimer podem ser calculados para qualquer voltagem, incluindo baixas voltagens em SEM (TEM em SEM), usando uma grande base de dados atômica constantemente atualizada.
  • Fácil calibração guiada por software de Cliff-Lorimer- e Zeta-Factors experimentais usando amostras padrão.
  • Os fatores Zeta para todos os elementos podem ser calculados a partir de apenas alguns padrões de elementos usando os fatores Cliff-Lorimer existentes.
  • Escolha de modelos de fundo: modelos físicos para amostras de elétrons transparentes e em massa, bem como cálculo matemático de fundo.
  • Geração de relatórios com diferentes modelos.

Aplicações

Ultimative Results with the New XFlash® 7 EDS Detectors for TEM 

© Image and sample courtesy of Michael Malaki, Shamail Ahmed; Material Science center, Faculty of physics, Philipps University Marburg

EDS Analyses of Coated Li-ion Battery Cathode Particle

The capacitance retention of NCM cathode material of batteries (SSB and LIB) can be improved by coating structures. To control the performance of these nanometer-thick coatings, their elemental distribution must be known. We present a SEM-based solution of EDS analysis achieving nanometer resolution on micrometer-sized cathode particles with irregular surfaces and compare it to TEM EDS.

Fields of Application of Elemental Analysis on TEM

Semiconductors
Deconvolution results at low X-ray energy of a spectrum obtained from a NiSi(Pt)

Quantification of the Pt Concentration in a NiSi(Pt)-NiSi2 Semiconductor Structure

This application example shows EDS data from the epitaxial growth of a Pt alloyed NiSi thin film and the quantification of a few at% of Pt alloyed in NiSi. NiSi is used for nm-sized metallization structures in semiconductor devices like MOSFETs.
Combined element maps of a layered system

Chemical Phase Analysis of a Layered Structure

It can be advantageous to check hyperspectral images for the existence of chemical phases without applying prior knowledge. Bruker’s ESPRIT AutoPhase automatically finds specimen regions of similar composition by analyzing a HyperMap based on Principle Component Analysis of the spectra. The sensitivity of this procedure can be adjusted. The approach is demonstrated using a multi-layer structure in cross-section as an example.
Mixed element map of nanowires

Chemical Characterization of Nanowires

Nanostructures, such as nanowires and nanorods and functionalized nanovehicles are of growing interest for various applications in nanotechnology, be that nano-electronics or drug delivery in the human body.
Single silicon atom in graphene

Identifiying a Single Atom on Graphene

Not only is it the highest art of EDS to obtain spectra of a single atom, but it can also provide valuable new information on the excitation properties of specific elements.
High angle annular darkfield image of an interconnect structure

Chemical Composition of Semiconductor Interconnects

Standard energy dispersive X-ray spectroscopy (EDS or EDX) using detector areas of 30mm2 on conventional scanning transmission electron microscopes (STEM) can deliver element mappings with nm resolution within a few minutes. The condition is, that the detector head is small enough (in slim-line design) to get as close to the specimen for (high solid angle) and as high above the specimen (for high take-off angle) as possible. The latter helps to avoid shadowing and absorption effects.
RAM microchip elemental distribution map

High Resolution Mapping of a Semiconductor RAM Microchip Using STEM-EDS in SEM (T-SEM)

Element distribution mapping of semiconductor nanostructures with X-ray based methods is not always straight forward. The need of nanoscale spatial resolution and X-ray peak overlaps are common challenges when investigating semiconductor materials. Sometimes it can be beneficial to use the SEM instead of expensive TEM tools and time for characterization.

Qual é o seu desafio analítico?

Bright field image and single element maps of a yeast cell

EDS for Life Science

EDS in S/TEM is particularly useful if many elements in a material have to be determined at once. This is the case for quite a few life science applications.
In-situ element map

In-situ Element Mapping at Elevated Temperatures

The use of heating holders, or any other in-situ reaction cells, which are suitable for electron microscopy and EDS, allows to monitor the effect of materials treatment in-situ or in-operando in the electron microscope. This means that information on changes in structure and element composition is available qualitatively and quantitavely with high spatial resolution.
HAADF image of Pd-Pt core shell particles

Qualitative and Quantitative Mapping of a Pd-Pt Core Shell Particle

Core shell particles play an increasingly important role in nanotechnology, particularily in catalysis. This application example presents element maps of a Pd-Pt core shell nano-particle.
Single silicon atom in graphene

Identifiying a Single Atom on Graphene

Not only is it the highest art of EDS to obtain spectra of a single atom, but it can also provide valuable new information on the excitation properties of specific elements.
Mixed element map of nanowires

Chemical Characterization of Nanowires

Nanostructures, such as nanowires and nanorods and functionalized nanovehicles are of growing interest for various applications in nanotechnology, be that nano-electronics or drug delivery in the human body.
High angle annular darkfield image of an interconnect structure

Chemical Composition of Semiconductor Interconnects

Standard energy dispersive X-ray spectroscopy (EDS or EDX) using detector areas of 30mm2 on conventional scanning transmission electron microscopes (STEM) can deliver element mappings with nm resolution within a few minutes. The condition is, that the detector head is small enough (in slim-line design) to get as close to the specimen for (high solid angle) and as high above the specimen (for high take-off angle) as possible. The latter helps to avoid shadowing and absorption effects.

Contate o especialista

Contact an Expert

* Please fill out the mandatory fields.

Please enter your first name
Please enter your first name
Please enter your e-mail address
Please enter your first company / institution
What best describes my current situation:
Please accept the Terms and Conditions

* Please fill out the mandatory fields.

Este site é protegido pela reCAPTCHA e pelo Google Política de Privacidade e Termos de Serviço do Google.