Bruker
Produkte & Lösungen
Anwendungen
Service
News & Events
Über uns
Karriere
Materialwissenschaftliche Forschung

Batterieforschung

Overcoming challenges in battery research with novel characterization solutions

Übersicht

Shedding Light on the Workings of Energy Storage Materials

Anwendungen im Bereich der Energieerzeugung und -speicherung erfordern einige der komplexesten Materialentwicklungsinitiativen der Gegenwart, um die Ziele hinsichtlich Effizienz und Zuverlässigkeit zu erreichen. Heutzutage werden viele unserer elektronischen Geräte, von Laptops bis hin zu Smartphones, mit wiederaufladbaren Lithium-Ionen-Batterien (Li-Ion) betrieben, die bald auch in vielen anderen Bereichen Einzug halten könnten. Dazu gehört, durch die laufende Entwicklung und steigende Verbreitung von Elektrofahrzeugen, auch der Transportsektor. Es werden ständig neue Materialien entwickelt, die die Art und Weise, wie wir Energie gewinnen, übertragen und speichern, verändern.

Die Leistung jeder Batterie, ob in Bezug auf ihre Kapazität, Lebensdauer oder Energiedichte, hängt letztlich von den spezifischen Eigenschaften der Materialien ab, aus denen Anode, Kathode, Elektrolyt und SEI bestehen. Bruker hat eine umfassende Reihe von Charakterisierungstechniken entwickelt, die es Wissenschaftlern ermöglichen, die physikalischen und chemischen Eigenschaften, die Leistung und die Stabilität aller Batteriekomponenten und der vollständig zusammengesetzten Batteriezellen zu verstehen und zu optimieren.

Lesen Sie weiter, um zu erfahren, wie Rasterkraftmikroskopie, FTIR-Spektroskopie, nanomechanische Tests und Röntgendiffraktionstechniken Einblicke in die Funktionsweise von Energiespeichermaterialien geben.

In-situ-Charakterisierung

In-situ-Charakterisierung

FTIR-Spektroelektrochemie

Untersuchung von gelösten Komponenten und Elektrode

Forscher können in-situ den elektrochemischen Prozess in den gelösten Komponenten und Elektroden eines Labor-Batteriemodellsystems überwachen. Diese Modellsysteme stellen keine fertigen Batterieprodukte dar. Aber man hat die Möglichkeit, die Anoden- und Kathodenmaterialien, die Elektrolytzusammensetzung, die Temperatur usw. während eines programmierten Spannungszyklus aufeinander abzustimmen. Die FTIR-Spektroskopie wird mit der elektrochemischen Reaktion synchronisiert. Als Ergebnis werden IR-Spektren über die Zeit / das Potenzial aufgenommen. Die Kombination von FTIR-Spektroskopie mit Elektrochemie bietet neben der elektrochemischen Reaktion des Experiments auch Einblicke in die molekulare Veränderung und den Reaktionsprozess der untersuchten Moleküle.

In-situ-/In-operando-Röntgendiffraktion

Verfolgen des Verhaltens der Batteriezellen während des Zyklus

Während des Ladens/Entladens verändern sich Kathode und Anode jeder Batteriezelle stetig, z. B. durch das Einbringen von Li-Kationen. Mit der Röntgendiffraktion (XRD) können sowohl die wechselnde Phasenzusammensetzung als auch die Entwicklung der Kristallstruktur gleichzeitig verfolgt werden. Dies ermöglicht es den Forschern, neue Energiespeichermaterialien auf atomarer Ebene zu verstehen, die Reaktionen, die während des Zyklus auftreten, zu verfolgen und das Degradationsverhalten zu überwachen, um die Leistung von Batterien zu verbessern.

Unsere Röntgendiffraktometer unterstützen Sie bei Ihrer Erforschung und Entwicklung von Batteriematerialien, von der Ex-situ-Analyse isolierter Kathoden- und Anodenmaterialien bis hin zur In-operando-Untersuchung voll funktionsfähiger Coin- und Pouch-Zellen.

Elektrochemische In-situ-Rasterkraftmikroskopie

Beobachtung des Li-Dendriten-Wachstums in-situ

Das Wachstum von Lithium-Dendriten ist eines der größten Probleme, das die Sicherheit von Li-Ionen-Batterien betrifft. Die Untersuchung der Anfangsstadien des Dendritenwachstums ist jedoch aufgrund der reaktiven und zerbrechlichen Beschaffenheit von Lithiumverbindungen schwierig, insbesondere wenn das Wachstum an der SEI untersucht wird.

Mithilfe der elektrochemischen Rasterkraftmikroskopie kann die morphologische Entwicklung der Elektrodenoberfläche unter Potenzialkontrolle nachvollzogen werden. Diese Experimente zeigen unterschiedliche Li- Abscheidungen auf Graphit für verschiedene Elektrolyte, was ein tieferes Verständnis des zugrundeliegenden Mechanismus des Dendritenwachstums in Li-Batterien ermöglicht.

Energie- und wellenlängendispersive Spektrometer in der Elektronenmikroskopie

Element-Mapping in Blei-Säure-Batterieelektroden

Die energiedispersive Spektrometrie (EDS) mittels eines Elektronenmikroskops ermöglicht das Element-Mapping von Batteriekomponenten auf einen Blick. Bestimmte Elementkombinationen, wie z. B. Schwefel und Blei, lassen sich mit WDS besser untersuchen.

Blei-Säure-Batterien (Akkumulatoren) sind wiederaufladbare Geräte zur Speicherung von elektrischer Energie, die durch elektrochemische Prozesse erzeugt wird. Die Batterien bestehen aus Elektroden aus Blei (Pb) und Bleidioxid (PbO2) und verdünnter Schwefelsäure (37 % H2SO4) als Elektrolyt. Während der Entladung von Blei-Säure-Batterien bildet sich auf den Elektroden sehr fein verteiltes Bleisulfat (PbSO4). Dieser Prozess wird durch das Wiederaufladen rückgängig gemacht. Röntgen-Elementverteilungsbilder sind ideal geeignet, um die Art und die räumliche Verteilung von Sulfatablagerungen zu untersuchen.

Ex-situ- und Fehleranalyse

Ex-situ- und Fehleranalyse

Nanomechanische Prüfung von Batterien

Erhöhung der Batteriesicherheit

Mechanische Beschädigungen, wie z. B. Sprödbruch der Elektroden und Durchdringung des Separators, können zu einer drastischen Freisetzung der gespeicherten Energie bis hin zu Batteriebränden führen. Darüber hinaus stellen das Versagen von Beschichtungen, mechanisch (oder durch Ionen) induzierte Quellung und Versteifung, Spannungen bei der Herstellung sowie mechanische Spannungen und Schäden durch mehrfache Lade-Entlade-Zyklen erhebliche Herausforderungen für die Entwicklung und Integration neuer Geräte dar. Daher ist es sowohl aus Sicherheits- als auch aus Leistungsgründen notwendig zu verstehen, wie sich diese Geräte mechanisch verhalten, einschließlich jeder Komponente in der entsprechenden Größe.

Die nanomechanische Prüfung von Batteriematerialien bietet eine quantitative Charakterisierung für neue Materialien und tiefere Einblicke zur Verbesserung der mechanischen Leistung.

Batterieforschung mit Raman-Mikroskopie

Kohlenstoffanalyse in flexiblen Elektroden

Batterien mit auf LiFePO4 (LFP) basierenden Kathoden sind bekanntermaßen sehr sicher und weisen kein Risiko eines thermischen Durchgehens auf, haben jedoch eine geringe elektrische Leitfähigkeit, was die Leistung bei hohen Lade-/Entladeraten einschränkt. Eine sehr dünne Kohlenstoffschicht auf den LFP-Partikeln kann die Leitfähigkeit verbessern. Die anodische Stabilität von kohlenstoffbeschichteten Kathodenmaterialien kann mit Raman-Spektroskopie untersucht werden, wodurch die Homogenität der Beschichtung nachgewiesen werden kann.

Alle Komponenten einer Batterie wie Anoden-/Kathodenmaterialien und Elektrolyte können mit einer sehr hohen lateralen Auflösung mittels Raman-Mikrospektroskopie sowohl ex- als auch in -situ analysiert werden. In Batterien wird häufig Kohlenstoff verwendet. Raman-Spektren können zur Unterscheidung seiner Allotrope verwendet werden und liefern weitere Informationen wie die Störstellenkonzentration.

Imaging Batteries and Fuel Cells with X-Ray Microscopy

Verify structural integrity and research microstructure of electrodes

X-ray microscopy enables to non-destructively visualize the internal 3D structure of batteries and fuel cells. XRM is therefore a great tool to help understanding failure mechanisms by monitoring the internal alignment of components such as electrode separation over the battery life time, or in stress tests.

The electrode microstructure of modern high-performance batteries such as Li-ion batteries significantly impacts key properties such as cycle life time and capacity. A lot of efforts therefore go into careful optimization of processing parameters to tease out the best battery performance. XRM as multi-scale analysis technique supports advanced battery research since it can reveal at high resolution the microstructure of the individual anode and cathode layers.

PR44 button cell scanned with SKYSCAN 1275, 8 µm voxel size.

Zugehörige Produkte